Air pollution not only damages the environment but also leads to various illnesses such as respiratory tract and cardiovascular diseases. Nowadays, estimating air pollutants concentration is becoming very important so that people can prepare themselves for the hazardous impact of air pollution beforehand. Various deterministic models have been used to forecast air pollution. In this study, along with various pollutants and meteorological parameters, we also use the concentration of the pollutants predicted by the community multiscale air quality (CMAQ) model which are strongly related to PM 2.5 concentration. After combining these parameters, we implement various machine learning models to predict the hourly forecast of PM 2.5 concentration in two big cities of South Korea and compare their results. It has been shown that Long Short Term Memory network outperforms other well-known gradient tree boosting models, recurrent, and convolutional neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.