The innate immune system is the first line of defense against invading pathogens. Innate immune cells recognize molecular patterns from the pathogen and mount a response to resolve the infection. The production of proinflammatory cytokines and reactive oxygen species, phagocytosis, and induced programmed cell death are processes initiated by innate immune cells in order to combat invading pathogens. However, pathogens have evolved various virulence mechanisms to subvert these responses. One strategy utilized by Gram-negative bacterial pathogens is the deployment of a complex machine termed the type Ⅲ secretion system (T3SS). The T3SS is composed of a syringe-like needle structure and the effector proteins that are injected directly into a target host cell to disrupt a cellular response. The Multisite autophosphorylation by YpkA to activate its kinase domain was also shown and postulated to serve as a mechanism to bypass regulation by host phosphatases. In addition, novel Yersinia effector protein targets, such as caspase-1, and signaling pathways including activation of the inflammasome were identified. In this review, we summarize the recent discoveries made on Yersinia effector proteins and their contribution to Yersinia pathogenesis.
BackgroundDetailed descriptions of the early development of parasitic nematodes are seldom available. The embryonic development of the plant-parasitic nematode Meloidogyne incognita was studied, focusing on the early events.ResultsA fixed pattern of repeated cell cleavages was observed, resulting in the appearance of the six founder cells 3 days after the first cell division. Gastrulation, characterized by the translocation of cells from the ventral side to the center of the embryo, was seen 1 day later. Approximately 10 days after the first cell division a rapidly elongating two-fold stage was reached. The fully developed second stage juvenile hatched approximately 21 days after the first cell division.ConclusionsWhen compared to the development of the free-living nematode Caenorhabditis elegans, the development of M. incognita occurs approximately 35 times more slowly. Furthermore, M. incognita differs from C. elegans in the order of cell divisions, and the early cleavage patterns of the germ line cells. However, cytoplasmic ruffling and nuclear migration prior to the first cell division as well as the localization of microtubules are similar between C. elegans and M. incognita.Electronic supplementary materialThe online version of this article (doi:10.1186/s12861-016-0109-x) contains supplementary material, which is available to authorized users.
Background:The catalytic mechanism of the Yersinia protein kinase YpkA is poorly understood. Results: Multiple N-terminal autophosphorylation sites regulate YpkA activation and residues 40 -49 of YpkA contribute to G␣q binding and phosphorylation. Conclusion:The N-terminal domain of YpkA plays a role in autophosphorylation and substrate binding. Significance: Elucidating how type III bacterial effectors are regulated is essential to our understanding of infectious diseases.
Epoxide hydrolases (EHs) are α/β-hydrolase fold superfamily enzymes that convert epoxides to 1,2-trans diols. In insects EHs play critical roles in the metabolism of toxic compounds and allelochemicals found in the diet and for the regulation of endogenous juvenile hormones (JHs). In this study we obtained a full-length cDNA, hvmeh1, from the generalist feeder Heliothis virescens that encoded a highly active EH, Hv-mEH1. Of the 10 different EH substrates that were tested, Hv-mEH1 showed the highest specific activity (1,180 nmol min−1 mg−1) for a 1,2-disubstituted epoxide-containing fluorescent substrate. This specific activity was more than 25- and 3,900-fold higher than that for the general EH substrates cis-stilbene oxide and trans-stilbene oxide, respectively. Although phylogenetic analysis placed Hv-mEH1 in a clade with some lepidopteran JH metabolizing EHs (JHEHs), JH III was a relatively poor substrate for Hv-mEH1. Hv-mEH1 showed a unique substrate selectivity profile for the substrates tested in comparison to those of MsJHEH, a well-characterized JHEH from M. sexta, and hmEH, a human microsomal EH. Hv-mEH1 also showed unique enzyme inhibition profiles to JH-like urea, JH-like secondary amide, JH-like primary amide, and non-JH-like primary amide compounds in comparison to MsJHEH and hmEH. Although Hv-mEH1 is capable of metabolizing JH III, our findings suggest that this enzymatic activity does not play a significant role in the metabolism of JH in the caterpillar. The ability of Hv-mEH1 to rapidly hydrolyze 1,2-disubstituted epoxides suggests that it may play roles in the metabolism of fatty acid epoxides such as those that are commonly found in the diet of Heliothis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.