With the advance of computational techniques, the amount of genomic data has risen exponentially, with a rapid rate [1] making it hard to utilize such data in the medical field without appropriate pre-processing, which in turn leads to more complexity and veracity issues [2] eventually creating multiple complications such as storage, analysis, privacy and security. Therefore, genomic data may look easy to handle in terms of its volume, but it actually requires quite a complicated process due to the complexity, heterogeneity and hybridity of its features. This process is entitled knowledge discovery process [3]: • Data recording Includes the different challenges and tools regarding the capture and storage of data. • Data pre-processing Which includes all the operations of cleaning and appropriation of the captured data to the ready to analyze form in order to optimize the analysis step. • Data analysis The task of evaluating data using different algorithms following a logical reasoning to examine each component of the data provided, with the aim of dispensing insightful outcomes.
The Dimensionality Curse is one of the most critical issues that are hindering faster evolution in several fields broadly, and in bioinformatics distinctively. To counter this curse, a conglomerate solution is needed. Among the renowned techniques that proved efficacy, the scaling-based dimensionality reduction techniques are the most prevalent. To insure improved performance and productivity, horizontal scaling functions are combined with Particle Swarm Optimization (PSO) based computational techniques. Optimization algorithms are an interesting substitute to traditional feature selection methods that are both efficient and relatively easier to scale. Particle Swarm Optimization (PSO) is an iterative search algorithm that has proved to achieve excellent results for feature selection problems. In this paper, a composite Spark Distributed approach to feature selection that combines an integrative feature selection algorithm using Binary Particle Swarm Optimization (BPSO) with Particle Swarm Optimization (PSO) algorithm for cancer prognosis is proposed; hence Spark Distributed Particle Swarm Optimization (SDPSO) approach. The effectiveness of the proposed approach is demonstrated using five benchmark genomic datasets as well as a comparative study with four state of the art methods. Compared with the four methods, the proposed approach yields the best in average of purity ranging from 0.78 to 0.97 and F-measure ranging from 0.75 to 0.96.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.