The object of the research is the development of a method for ensuring the authenticity and integrity of data in wireless channels based on post-quantum cryptosystems. The development of modern digital technologies ensures the transition to smart technologies and the formation of Next Generation Networks. The formation of smart technologies, as a rule, uses wireless communication channel standards IEEE 802.11X, IEEE 802.15.4, IEEE 802.16, which use only authentication protocols and privacy mechanisms, which are formed on symmetric algorithms. In the conditions of the post-quantum period (the advent of a full-scale quantum computer), the stability of such algorithms is questioned. Such systems, as a rule, are formed on the basis of the synthesis of socio-cyber-physical systems and cloud technologies, which simplifies the conduct of Advanced Persistent Threat attacks, both on the internal circuit of execution systems and on external control systems. The creation of multi-circuit information protection systems allows for an objective assessment of the current state of the system as a whole and the formation of preventive measures to counter cyber threats. The proposed method of providing basic security services: confidentiality, integrity and authenticity based on crypto-code constructions takes into account the level of secrecy of information transmitted over wireless channels and/or stored in databases of socio-cyber-physical systems. The use of post-quantum algorithms – McEliece/Niederreiter crypto-code constructions on elliptic/modified elliptic/lossy/Low-density parity-check code provides the necessary level of stability in the post-quantum cryptoperiod (crypto-stability at the level of 1025–1035 group operations), speed and probability of information (Рerr not lower than 10-9–10-12). The proposed method of information exchange using wireless communication channels ensures their practical implementation on resource-limited devices (creating of CCC on the GF field (24–26).
In modern software, crypto-algorithms are widely used for both data encryption tasks, and authentication and integrity checks. There are well-known and proven crypto-algorithms. Their cryptoresistance is either mathematically proven or based on the need to solve a mathematically complex problem (factorization, discrete logarithm, etc.). On the other hand, in the computer world, information constantly appears about errors or «holes» in a particular program (including one that uses crypto-algorithms) or that it was broken (cracked). This creates distrust both in specific programs and in the possibility to protect something in general by cryptographic methods not only from special services, but also from ordinary hackers. A promising direction of research in this field is the implementation of a hybrid random number generator with two types of entropy sources in cryptosystems. The method and means of implementing a hybrid random number generator with two types of entropy sources: external – based on Zener diode noise and internal – based on the uncertainty state of the transistor-transistor logic structure are presented. One of the options for the practical implementation of a random number generator is presented, where two sources are used as a source of entropy: an external source – Zener diode noise and an internal source – the undefined state of the transistor-transistor logic structure. The functional diagram of the proposed random number generator with two types of entropy sources is given. The MATLAB/Simulink model of the proposed random number generator is built, the results of the statistical analysis of the generated random sequences by the NIST SP 800-22 test package are given.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.