We present a simple method to produce carbon nanotube-based films with exceptional superhydrophobicity and impact icephobicity by depositing acetone-treated single-walled carbon nanotubes on glass substrates. This method is scalable and can be adopted for any substrate, both flexible and rigid. These films have indicated a high contact angle, in the vicinity of 170°, proved both by static and dynamic analysis processes. The dynamic evaporation studies indicated that a droplet deposited on the treated films evaporated in the constant contact angle mode for more than 80% of the total evaporation time, which is definitely a characteristic of superhydrophobic surfaces. Furthermore, the acetone-functionalized films showed a strong ability to mitigate ice accretion from supercooled water droplets (-8 °C), when the droplets were found to bounce off the films tilted at 30°. The untreated nanotube films did not indicate similar behavior, and the supercooled water droplets remained attached to the films' surfaces. Such studies could be the foundation of highly versatile technologies for both water and ice mitigation.
Hybrid nanocomposite films of ITO-coated, self-assembled porous nanostructures of tungsten trioxide (WO(3)) were fabricated using electrochemical anodization and sputtering. The morphology and chemical nature of the porous nanostructures were studied by Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS), respectively. The photoelectrochemical (PEC) properties of WO(3) porous nanostructures were studied in various alkaline electrolytes and compared with those of titania nanotubes. A new type of alkaline electrolyte containing a mixture of NaOH and KOH was proposed for the first time to the best of our knowledge and shown to improve the photocurrent response of the photoanodes. Here, we show that both the WO(3) nanostructures and titania nanotubes (used for comparison) exhibit superior photocurrent response in the mixture of NaOH and KOH than in other alkaline electrolytes. The WO(3) porous nanostructures suffered from surface corrosion resulting in a huge reduction in the photocurrent density as a function of time in the alkaline electrolytes. However, with a protective coating of ITO (100 nm), the surface corrosion of WO(3) porous nanostructures reduced drastically. A tremendous increase in the photocurrent density of as much as 340% was observed after the ITO was applied to the WO(3) porous nanostructures. The results suggest that the hybrid ITO/WO(3) nanocomposites could be potentially coupled with titania nanotubes in a multi-junction PEC cell to expand the light absorption capability in the solar spectrum for water splitting to generate hydrogen.
In this study, robust nanoscale superamphiphobic (SAP) copper (Cu) sheet surfaces are obtained with an exceptionally simple and environmentally friendly technique. Copper oxide nanostructures are imparted onto the Cu sheet surface by a facile treatment of the surfaces with hot de-ionized water (%80°C) for different time periods. A morphological transformation starting from cube-like nanostructures associated with Cu 2 O to leaf-like nanostructures of CuO with the progress in treatment time is observed. Scanning electron microscopy (SEM), X-ray diffraction (XRD), energydispersive X-ray spectroscopy (EDS), and laser scanning microscopy (LSM) analysis confirm the formation of copper oxide nanostructures. Consequently, the wetting properties of the treated Cu sheet surfaces toward water and organic liquids is varied after the surface energy reduction of the nanostructures with long chain fluorocarbon molecules of 1H, 1H, 2H, 2H-perfluorodecyltrichlorosilane (PFDCS). The leaf-like nanostructured CuO surfaces demonstrate SAP properties with a water contact angle (CA) as high as 160°and organic liquid CAs of around 150°. The robustness of the obtained SAP Cu sheet surface is confirmed after being exposed to a stream of both water and organic liquids, annealed under various temperatures in ambient environment, and ultra-sonicated in acetone for various time periods.
The nature of water interaction with tungsten nanorods (WNRs) fabricated by the glancing-angle deposition technique (GLAD)-using RF magnetron sputtering under various Ar pressures and substrate tilting angles and then subsequent coating with Teflon-has been studied and reported. Such nanostructured surfaces have shown strong water repellency properties with apparent water contact angles (AWCA) of as high as 160°, which were found to depend strongly upon the fabrication conditions. Variations in Ar pressure and the substrate tilting angle resulted in the generation of WNRs with different surface roughness and porosity properties. A theoretical model has been proposed to predict the observed high AWCAs measured at the nanostructure interfaces. The unique pyramidal tip geometry of WNRs generated at low Ar pressure with a high oblique angle reduced the solid fraction at the water interface, explaining the high AWCA measured on such surfaces. It was also found that the top geometrical morphologies controlling the total solid fraction of the WNRs are dependent upon and controlled by both the Ar pressure and substrate tilting angle. The water repellency of the tungsten nanorods with contact angles as high as 160° suggests that these coatings have enormous potential for robust superhydrophobic and anti-icing applications in harsh environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.