This paper discusses the use of thick threshold activation detectors for the characterization of low intensity neutron fields. This technique has been applied to the determination of the spectral emission of a low activity (37 GBq) Am-Be source. The reaction rates induced by the neutrons emitted by this source in different thick metallic targets (Al, Si, Fe, In) In. Each measured reaction rate corresponding to a threshold detector response depends on the spectral emission of the source via a correcting factor. This factor, which takes into account the source detector geometry, the neutron attenuation and diffusion by the detectors, has been determined by Monte Carlo simulation using MCNP5 code. The spectral emission of the neutron source has been generated from the response matrix of the threshold detectors by using different neutron spectrum unfolding methods (Stayn'l, Gravel and Maxed). A fairly good agreement with the assumed ISO spectrum has been achieved. *
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.