ObjectivesSmoking has been connected to citrullination of antigens and formation of anti-citrullinated peptide antibodies (ACPAs) in rheumatoid arthritis (RA). Since smoking can modify proteins by carbamylation (formation of homocitrulline), this study was conducted to investigate these effects on vimentin in animal models and RA.MethodsThe efficiency of enzymatic carbamylation of vimentin was characterised. B-cell response was investigated after immunisation of rabbits with different vimentin isoforms. Effects of tobacco smoke exposure on carbamylation of vimentin and formation of autoantibodies were analysed in mice. The antibody responses against isoforms of vimentin were characterised with respect to disease duration and smoking status of patients with RA.ResultsEnzymatic carbamylation of vimentin was efficiently achieved. Subsequent citrullination of vimentin was not disturbed by homocitrullination. Sera from rabbits immunised with carbamylated vimentin (carbVim), in addition to carbVim also recognised human IgG-Fc showing rheumatoid factor-like reactivity. Smoke-exposed mice contained detectable amounts of carbVim and developed a broad immune response against carbamylated antigens. Although the prevalence of anti-carbamylated antibodies in smokers and non-smokers was similar, the titres of carbamylated antibodies were significantly increased in sera of smoking compared with non-smoking RA. CarbVim antibodies were observed independently of ACPAs in early phases of disease and double-positive patients for anti-mutated citrullinated vimentin (MCV) and anti-carbVim antibodies showed an extended epitope recognition pattern towards MCV.ConclusionsCarbamylation of vimentin is inducible by cigarette smoke exposure. The polyclonal immune response against modified antigens in patients with RA is not exclusively citrulline-specific and carbamylation of antigens could be involved in the pathogenesis of disease.Trial registration number
ISRCTN36745608; EudraCT Number: 2006-003146-41.
ObjectiveIn idiopathic inflammatory myopathies (IIM) infiltration of immune cells into muscle and upregulation of MHC-I expression implies increased antigen presentation and involvement of the proteasome system. To decipher the role of immunoproteasomes in myositis, we investigated individual cell types and muscle tissues and focused on possible immune triggers.MethodsExpression of constitutive (PSMB5, -6, -7) and corresponding immunoproteasomal subunits (PSMB8, -9, -10) was analyzed by real-time RT-PCR in muscle biopsies and sorted peripheral blood cells of patients with IIM, non-inflammatory myopathies (NIM) and healthy donors (HD). Protein analysis in muscle biopsies was performed by western blot. Affymetrix HG-U133 platform derived transcriptome data from biopsies of different muscle diseases and from immune cell types as well as monocyte stimulation experiments were used for validation, coregulation and coexpression analyses.ResultsReal-time RT-PCR revealed significantly increased expression of immunoproteasomal subunits (PSMB8/-9/-10) in DC, monocytes and CD8+ T-cells in IIM. In muscle biopsies, the immunosubunits were elevated in IIM compared to NIM and exceeded levels of matched blood samples. Proteins of PSMB8 and -9 were found only in IIM but not NIM muscle biopsies. Reanalysis of 78 myositis and 20 healthy muscle transcriptomes confirmed these results and revealed involvement of the antigen processing and presentation pathway. Comparison with reference profiles of sorted immune cells and healthy muscle confirmed upregulation of PSMB8 and -9 in myositis biopsies beyond infiltration related changes. This upregulation correlated highest with STAT1, IRF1 and IFNγ expression. Elevation of T-cell specific transcripts in active IIM muscles was accompanied by increased expression of DC and monocyte marker genes and thus reflects the cell type specific involvement observed in peripheral blood.ConclusionsImmunoproteasomes seem to indicate IIM activity and suggest that dominant involvement of antigen processing and presentation may qualify these diseases exemplarily for the evolving therapeutic concepts of immunoproteasome specific inhibition.
In pSS, catalytic subunits of the proteasome are upregulated at the mRNA level, while dysregulation of subunit β1i is attributed to B lymphocytes. B cell resistance after proteasome inhibition differs from the classical concept of increased susceptibility toward inhibition in activated cells, supporting the novel notion that susceptibility depends on cellular intrinsic factors and on proteasome activation.
Adult-onset Still’s disease (AOSD) is a systemic auto-inflammatory disease characterized by the presence of immunologically mediated inflammation and deficient resolution of inflammation. Canakinumab is an approved IL-1β inhibitor in the treatment of AOSD with a balanced efficacy and safety profile. Since inflammatory cytokines play a major role in the pathogenesis of AOSD, we investigated the effects of canakinumab on the cytokine profile of AOSD patients from a randomized controlled trial. Multiplex analysis and ELISA were used to test the concentrations of several cytokines at three time points—week 0 (baseline), week 1 and week 4—in two patient groups—placebo and canakinumab. Two-way repeated-measures analysis of variance revealed a significant temporal effect on the concentrations of MRP 8/14, S100A12, IL-6 and IL-18 with a significant decrease at week 4 in the canakinumab group exclusively. Comparing responders with non-responders to canakinumab showed a significant decrease in MRP 8/14, IL-1RA, IL-18 and IL-6 in responders at week 4, while S100A12 levels decreased significantly in responders and non-responders. In summary, canakinumab showed a striking effect on the cytokine profile in patients with AOSD, exhibiting a clear association with clinical response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.