Here we describe the development of transgene-pyramided stable elite rice lines resistant to disease and insect pests by conventional crossing of two transgenic parental lines transformed independently with different genes. The Xa21 gene (resistance to bacterial blight), the Bt fusion gene (for insect resistance) and the chitinase gene (for tolerance of sheath blight) were combined in a single rice line by reciprocal crossing of two transgenic homozygous IR72 lines. F4 plant lines carrying all the genes of interest stably were identified using molecular methods. The identified lines, when exposed to infection caused by Xanthomonas oryzae pv oryzae, showed resistance to bacterial blight. Neonate larval mortality rates of yellow stem borer ( Scirpophaga incertulas) in an insect bioassay of the same identified lines were 100%. The identified line pyramided with different genes to protect against yield loss showed high tolerance of sheath blight disease caused by Rhizoctonia solani.
BackgroundAfter observing peculiar rice varieties in Myanmar, in terms of classification in varietal groups and of grain quality, we focused on Myanmar varieties and analyzed variations at 19 microsatellite loci as well as sequences of the aroma gene BADH2.ResultsMicrosatellites were able to retrieve the well-established classification into Indica (isozyme group 1), Japonica (group 6, comprising temperate and tropical forms) and specific groups from the Himalayan foothills including some Aus varieties (group 2) and some aromatic varieties (group 5). They revealed a new cluster of accessions close to, but distinct from, non-Myanmar varieties in group 5. With reference to earlier terminology, we propose to distinguish a group “5A” including group 5 varieties from the Indian subcontinent (South and West Asia) and a group “5B” including most group 5 varieties from Myanmar. In Myanmar varieties, aroma was distributed in group 1 (Indica) and in group 5B. New BADH2 variants were found. Some accessions carried a 43 bp deletion in the 3’ UTR that was not completely associated with aroma. Other accessions, all of group 5B, displayed a particular BADH2 allele with a 3 bp insertion and 100% association with aroma.ConclusionWith the new group and the new alleles found in Myanmar varieties, our study shows that the Himalayan foothills contain series of non-Indica and non-Japonica varietal types with novel variations for useful traits.Electronic supplementary materialThe online version of this article (doi:10.1186/1939-8433-5-20) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.