In schizophrenia, glutamic acid decarboxylase 1 (GAD1) disturbances are robust, consistently observed, cell-type specific and represent a core feature of the disease. In addition, neuropeptide Y (NPY), which is a phenotypic marker of a sub-population of GAD1-containing interneurons, has shown reduced expression in the prefrontal cortex in subjects with schizophrenia, suggesting that dysfunction of the NPY+ cortical interneuronal sub-population might be a core feature of this devastating disorder. However, modeling gene expression disturbances in schizophrenia in a cell type-specific manner has been extremely challenging. To more closely mimic these molecular and cellular human post-mortem findings, we generated a transgenic mouse in which we downregulated GAD1 mRNA expression specifically in NPY+ neurons. This novel, cell type-specific in vivo system for reducing gene expression uses a bacterial artificial chromosome (BAC) containing the NPY promoter-enhancer elements, the reporter molecule (eGFP) and a modified intron containing a synthetic microRNA (miRNA) targeted to GAD1. The animals of isogenic strains are generated rapidly, providing a new tool for better understanding the molecular disturbances in the GABAergic system observed in complex neuropsychiatric disorders such as schizophrenia. In the future, because of the small size of the silencing miRNAs combined with our BAC strategy, this method may be modified to allow generation of mice with simultaneous silencing of multiple genes in the same cells with a single construct, and production of splice-variant-specific knockdown animals.
Comparative analysis of methanogen compositions in the feces of horse and pony was carried out by constructing the α-subunit of methyl coenzyme-M reductase (mcrA) gene and 16S ribosomal RNA gene (16S rRNA) clone libraries. The mcrA clone library analysis indicated that Methanomicrobiales was predominant in both horse and pony. Furthermore, most of the clones of the 16S rRNA gene library showed that Methanomicrobiales was also predominant in horse and pony, but the LIBSHUFF analysis showed that the horse and pony libraries were significantly different (P < 0.05). Most of operational taxonomic units (OTUs) showed low similarity to the identified methanogens in both the mcrA and the 16S rRNA clone libraries. The results suggest that horse and pony harbor unidentified and novel methanogens in their hindgut. The methanogen population was higher in horse than in pony; however, the anaerobic fungal population was similar in horse and pony. The methanogen diversity was different between two breeds of Equus caballus.
Although buffaloes and cattle are ruminants, their digestive capabilities and rumen microbial compositions are considered to be different. The purpose of this study was to compare the rumen microbial ecology of crossbred water buffaloes and cattle that were fed the same diet. Cattle exhibited a higher fermentation rate than buffaloes. Methane production and methanogen density were lower in buffaloes. Phylogenetic analysis of Fibrobacter succinogenes-specific 16S ribosomal RNA gene clone library showed that the diversity of groups within a species was significantly different (P < 0.05) between buffalo and cattle and most of the clones were affiliated with group 2 of the species. Population densities of F.succinogenes, Ruminococcus albus and R. flavefaciens were higher until 6 h post-feeding in cattle; however, buffaloes exhibited different traits. The population of anaerobic fungi decreased at 3 h in cattle compared to buffaloes and was similar at 0 h and 6 h. The diversity profiles of bacteria and fungi were similar in the two species. The present study showed that the profiles of the fermentation process, microbial population and diversity were similar in crossbred water buffaloes and crossbred cattle.
Comparative analyses of methanogen diversity in the rumen of crossbred buffalo and cattle fed the same diet in the Philippines was performed by cloning the methyl coenzyme M reductase A (mcrA) gene. The cattle and buffalo libraries consisted of 50 clones each. Comparative analysis of the amino acid sequence revealed that these 2 libraries differed significantly (P < 0.01). The deduced amino acid sequences of the clones were classified into 9 operational taxonomic units (OTUs) in buffalo and 11 OTUs in cattle. Sequence similarity between the clones and known cultured methanogens ranged from 86 to 97 % for buffalo and 84 to 99 % for cattle. Methanobrevibacter species were predominant in buffalo (64 % of the clones), and an unknown mcrA was predominant in cattle (52 % of the clones). A large number of clones with low similarity to cultivated methanogens was observed in both buffalo and cattle, suggesting the presence of an unknown methanogen species in their rumen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.