Since Markowitz's seminal work on the meanvariance model in modern portfolio theory, many studies have been conducted on computational techniques and recently meta-heuristics for portfolio selection problems. In this work, we propose and investigate a new hybrid algorithm integrating the population based incremental learning and differential evolution algorithms for the portfolio selection problem. We consider the extended mean-variance model with practical trading constraints including the cardinality, floor and ceiling constraints. The proposed hybrid algorithm adopts a partially guided mutation and an elitist strategy to promote the quality of solution. The performance of the proposed hybrid algorithm has been evaluated on the extended benchmark datasets in the OR Library. The computational results demonstrate that the proposed hybrid algorithm is not only effective but also efficient in solving the mean-variance model with real world constraints.
A phishing attack is one of the most significant problems faced by online users because of its enormous effect on the online activities performed. In recent years, phishing attacks continue to escalate in frequency, severity and impact. Several solutions, using various methodologies, have been proposed in the literature to counter the web-phishing threats. Notwithstanding, the existing technology cannot detect the new phishing attacks accurately due to the insufficient integration of features of the text, image and frame in the evaluation process. The use of related features of images, frames and text of legitimate and non-legitimate websites and associated artificial intelligence algorithms to develop an integrated method to address these together. This paper presents an Adaptive Neuro-Fuzzy Inference System (ANFIS) based robust scheme using the integrated features of the text, images and frames for web-phishing detection and protection. The proposed solution achieves 98.3% accuracies. To our best knowledge, this is the first work that considers the best-integrated text, image and frame feature based solution for phishing detection scheme.
Abstract-The recent expansion of pervasive computing technology has contributed with novel means to pursue human activities in urban space. The urban dynamics unveiled by these means generate an enormous amount of data. These data are mainly endowed by portable and radio-frequency devices, transportation systems, video surveillance, satellites, unmanned aerial vehicles, and social networking services. This has opened a new avenue of opportunities, to understand and predict urban dynamics in detail, and plan various real-time services and applications in response to that. Over the last decade, certain aspects of the crowd, e.g. mobility, sentimental, size estimation and behavioral, have been analyzed in detail and the outcomes have been reported. This article mainly conducted an extensive survey on various data sources used for different urban applications, the state-of-the-art on urban data generation techniques and associated processing methods in order to demonstrate their merits and capabilities. Then, a possible crowd event detection framework is discussed which fuses data from all the available pervasive technology sources. In addition, available open-access crowd datasets for urban event detection are provided along with relevant Application Programming Interfaces, and finally, some open challenges and promising research directions are outlined.Index Terms-Urban sensing, pervasive technology, crowd mobility and management, information fusion, decision support system, benchmark datasets.
Portfolio optimization involves the optimal assignment of limited capital to different available financial assets to achieve a reasonable trade-off between profit and risk. We consider an alternative Markowitz's mean-variance model in which the variance is replaced with an industry standard risk measure, Value-at-Risk (VaR), in order to better assess market risk exposure associated with financial and commodity asset price fluctuations. Realistic portfolio optimization in the mean-VaR framework is a challenging problem since it leads to a non-convex NP-hard problem which is computationally intractable. In this work, an efficient learning-guided hybrid multi-objective evolutionary algorithm (MODE-GL) is proposed to solve mean-VaR portfolio optimization problems with real-world constraints such as cardinality, quantity, preassignment, round-lot and class constraints. A learning-guided solution generation strategy is incorporated into the multi-objective optimization process to promote efficient convergence by guiding the evolutionary search towards promising regions of the search space. The proposed algorithm is compared with the Nondominated Sorting Genetic Algorithm (NSGA-II) and the Strength Pareto Evolutionary Algorithm (SPEA2). Experimental results using historical daily financial market data from S &P 100 and S & P 500 indices are presented. The results shows that MODE-GL outperforms two existing techniques for this important class of portfolio investment problems in terms of solution quality and computational time. The results highlight that the proposed algorithm is able to solve the complex portfolio optimization without simplifications while obtaining good solutions in reasonable time and has significant potential for use in practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.