Hybrid incompatibility in F 1 hybrids or later generations is often observed as sterility or inviability. This incompatibility acts as postzygotic reproductive isolation, which results in the irreversible divergence of species. Here, we show that the reciprocal loss of duplicated genes encoding mitochondrial ribosomal protein L27 causes hybrid pollen sterility in F 1 hybrids of the cultivated rice Oryza sativa and its wild relative O. glumaepatula. Functional analysis revealed that this gene is essential for the later stage of pollen development, and distribution analysis suggests that the gene duplication occurred before the divergence of the AA genome species. On the basis of these results, we discuss the possible contribution of the "founder effect" in establishing this reproductive barrier.
QTL mapping using NGS-assisted BSA was successfully applied to an F population for downy mildew resistance in cucumber. QTLs detected by NGS-assisted BSA were confirmed by conventional QTL analysis. Downy mildew (DM), caused by Pseudoperonospora cubensis, is one of the most destructive foliar diseases in cucumber. QTL mapping is a fundamental approach for understanding the genetic inheritance of DM resistance in cucumber. Recently, many studies have reported that a combination of bulked segregant analysis (BSA) and next-generation sequencing (NGS) can be a rapid and cost-effective way of mapping QTLs. In this study, we applied NGS-assisted BSA to QTL mapping of DM resistance in cucumber and confirmed the results by conventional QTL analysis. By sequencing two DNA pools each consisting of ten individuals showing high resistance and susceptibility to DM from a F population, we identified single nucleotide polymorphisms (SNPs) between the two pools. We employed a statistical method for QTL mapping based on these SNPs. Five QTLs, dm2.2, dm4.1, dm5.1, dm5.2, and dm6.1, were detected and dm2.2 showed the largest effect on DM resistance. Conventional QTL analysis using the F confirmed dm2.2 (R = 10.8-24 %) and dm5.2 (R = 14-27.2 %) as major QTLs and dm4.1 (R = 8 %) as two minor QTLs, but could not detect dm5.1 and dm6.1. A new QTL on chromosome 2, dm2.1 (R = 28.2 %) was detected by the conventional QTL method using an F population. This study demonstrated the effectiveness of NGS-assisted BSA for mapping QTLs conferring DM resistance in cucumber and revealed the unique genetic inheritance of DM resistance in this population through two distinct major QTLs on chromosome 2 that mainly harbor DM resistance.
Reduced seed shattering was a critical evolutionary step in crop domestication. Two cultivated rice species, Oryza sativa and Oryza glaberrima, were independently domesticated from the wild species Oryza rufipogon in Asia and Oryza barthii in Africa, respectively. A single nucleotide polymorphism (SNP) in the c gene, which encodes a trihelix transcription factor, causes nonshattering in O. sativa. However, the genetic mechanism of nonshattering in O. glaberrima is poorly understood. We conducted an association analysis for the coding sequences of SH3/SH4 in AA- genome rice species and the mutation suggested to cause nonshattering was demonstrated to do so using a positional-cloning approach in the O. sativa genetic background. We found that the loss of seed shattering in O. glaberrima was caused by an SNP resulting in a truncated SH3/SH4 protein. This mutation appears to be endemic and to have spread in the African gene pool by hybridization with some O. barthii accessions. We showed that interaction between the O. sativa and O. glaberrima domestication alleles of SH3 in heterozygotes induces a 'throwback' seed-shattering phenotype similar to that in the wild species. Identification of the causative SNP provides new insights into the molecular basis of seed shattering in crops and may facilitate investigation of the history of African rice domestication.
F 1 sterility, one of the most common post-zygotic reproductive barriers, is frequently observed in both interspecific and intraspecific crosses of rice. Elucidating the genetic and cytological mechanisms of F 1 pollen sterility is important to exploit genetic resources and to understand the evolutionary dynamics of post-zygotic reproductive isolation in rice. Here, we report two F 1 pollen sterility loci, designated S36 and S25, found in an interspecific cross between O. sativa ssp. japonica (Taichung 65) and O. nivara (IRGC105444), and an intraspecific cross between O. sativa ssp. japonica (Asominori) and ssp. indica (IR24). Genetic analyses revealed that both loci are located on distal end of the short arm of chromosome 12 and that allelic interaction at the heterozygous locus caused the sterility of male gametes carrying the japonica alleles in both cases.Comparison of map positions of S36 and S25 suggested that these two loci might be the same locus. Cytological investigation revealed that abnormality of sterile pollen grains caused by S36 occurred mainly at the late bicellular stage after initiation of starch accumulation. This study would provide the better understanding on the genetic nature and the cytological mechanism of F 1 pollen sterility in rice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.