Basic Safety Messages that are frequently generated from multiple connected vehicles can play a primordial role in providing transport data see credible and reliable information they contain. Otherwise, when considering the way Basic Safety Messages (BSMs) are treated, multiple deficiencies prevent the latter to be capable of constituting a precious data source. As we know, data become more useful the more widely are used, which is the exact opposite of what happens with the BSMs that exist only temporarily, used locally, considered disposable, and are never stored. In this paper, we introduce a data reuse model that retains collected BSMs, stores, and processes them inside the vehicle constituting a continuous data source holding retained snapshots along the roadway. Our model provided a primary data source available on a large scale, considered to be a worthy dataset for machine learning tasks, capable of visualizing different traffic-related indicators to enhance analytics and support decisions-making. In the study case, we set up an in-vehicle data platform, where we achieved an 80% of BSMs size reduction and provided a rich set of APIs to serve applications. We also adopted the Artificial Neural Networks (ANN) as an information processing paradigm for performing traffic volume prediction, where the obtained results have reached over 99% of accuracy.
For connected vehicles, as well as generally for the transportation sector, data are now seen as a precious resource. They can be used to make right decisions, improve road safety, reduce CO2 emissions, or optimize processes. However, analyzing these data is not so much a question of which technologies to use, but rather about where these data are analyzed. Thereby, the emerging vehicle architecture has to become a data-oriented architecture based on embedded computing platforms and take into account new applications, artificial intelligence elements, advanced analytics, and operating systems. Accordingly, in this paper, we introduce the concept of data management to the vehicle by proposing an on-board data management layer, so that the vehicle can play the role of data platform capable of storing, processing, and diffusing data. Our proposed layer supports analytics and data science to deliver additional value from the connected vehicle data and stimulate the development of new services. In addition, our data platform can also form or contribute to shaping the backbone of data-driven transport. An on-board platform was built where the dataset size was reduced 80% and a rate of 99% accuracy was achieved in a 5 min traffic flow prediction using artificial neural networks (ANNs).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.