OBJECTIVE Chronic pain is a major distressing symptom of Parkinson's disease (PD) that is often undertreated. Subthalamic nucleus (STN) deep brain stimulation (DBS) delivers high-frequency stimulation (HFS) to patients with PD and has been effective in pain relief in a subset of these patients. However, up to 74% of patients develop new pain concerns while receiving STN DBS. Here the authors explore whether altering the frequency of STN DBS changes pain perception as measured through quantitative sensory testing (QST). METHODS Using QST, the authors measured thermal and mechanical detection and pain thresholds in 19 patients undergoing DBS via HFS, low-frequency stimulation (LFS), and off conditions in a randomized order. Testing was performed in the region of the body with the most pain and in the lower back in patients without chronic pain. RESULTS In the patients with chronic pain, LFS significantly reduced heat detection thresholds as compared with thresholds following HFS (p = 0.029) and in the off state (p = 0.010). Moreover, LFS resulted in increased detection thresholds for mechanical pressure (p = 0.020) and vibration (p = 0.040) compared with these thresholds following HFS. Neither LFS nor HFS led to changes in other mechanical thresholds. In patients without chronic pain, LFS significantly increased mechanical pain thresholds in response to the 40-g pinprick compared with thresholds following HFS (p = 0.032). CONCLUSIONS Recent literature has suggested that STN LFS can be useful in treating nonmotor symptoms of PD. Here the authors demonstrated that LFS modulates thermal and mechanical detection to a greater extent than HFS. Low-frequency stimulation is an innovative means of modulating chronic pain in PD patients receiving STN DBS. The authors suggest that STN LFS may be a future option to consider when treating Parkinson's patients in whom pain remains the predominant complaint.
Adult growth hormone (GH) deficiency is rare and requires replacement with extrinsic/synthetic injection. GH hypersensitivity has been reported; specifically, atopic patients may develop rashes from somatotropin therapy. Allergic and non-allergic skin reactions to recombinant human GH are uncommon and infrequently reported. We describe a graded-dose challenge with intravenous Norditropin® in a 65-year-old atopic adult woman who developed a severe whole-body rash with Norditropin FlexPro® administration on several occasions but was negative on skin-prick testing to Norditropin® percutaneously and intradermally, but the patch testing was positive for gold and nickel.The patient was registered as a direct admission to the emergency room at a university hospital for a rapid antigen coronavirus disease 2019 (COVID-19) testing after having received two COVID-19 vaccinations and re-testing four months after vaccination. She was then directly admitted to a non-COVID-19 intensive care unit with direct bedside supervision by a registered nurse and a physician board certified in internal medicine, allergy/immunology, and pulmonary diseases. The patient brought a Norditropin® pen which our pharmacy team attached to a compatible syringe for dilutions. A graded dose challenge at a final dosage of 0.1 mL was performed and the patient was monitored for allergic and other adverse drug reactions, which did not occur. At the time of writing this case report, the patient has been maintained on Norditropin FlexPro® 0.1 mL and has not experienced any adverse reactions, including recurrent skin eruptions.The case presented is the first to describe a patient who successfully tolerated a graded dose challenge of an adult patient to GH replacement therapy (as Norditropin®) under supervision in an intensive care unit, whereas prior to reporting of this case, a graded dose challenge to GH replacement therapy had only been successfully performed in a child using another formulation of somatotropin (Humatrope®). Hence, this case lends support that graded dose challenge with somatotropin analogs may be considered for patients with isolated GH deficiency such as in the case presented here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.