In this work, the experimental and simulation analysis of the performance of geopolymer composites reinforced with steel fiber and polypropylene fiber is investigated. By embedding hooked end steel fiber and polypropylene fiber with various volume fractions of 0%, 0.5%, 1%, 1.5% to the geopolymer concrete mixture, the mechanical behavior was enhanced significantly through experimental results. The compressive strength was improved 26% with 0.5% of polypropylene fiber and 46% with 1% of hooked end steel fiber while the increment of splitting tensile strength was 12% and 28%, respectively. The flexural strength of specimens using two fiber types was also improved when compared with the non-fiber geopolymer concrete. The highest increment obtained with 1.5% of fiber volume content was from 26% to 42%. The compressive performance and flexural performance of fiber-reinforced geopolymer concrete were also better than specimens without fiber, with a higher load carrying capacity, higher stress, higher toughness and smaller strain. Using hooked end steel fiber resulted in better mechanical strength than using polypropylene fiber, and the presence of fibers is an important factor related to the strength improvements. A finite element analysis was modeled by the ANSYS program, and this showed that the load–deflection response and crack patterns also agreed quite well with experimental results.
To properly restore masonry cultural heritage sites, the materials used for retrofitting can have a critical effect, and this requires standards for traditional Korean brick and lime mortar to be examined. This study experimentally investigated the material characteristics of Korean traditional bricks and two types of lime mortar (quicklime lumps and powdered hydrated lime) and the strength of masonry specimens made from those materials. Four different mixing ratios of lime, sand and white cement were considered as material parameters in this study. The experiment included uniaxial compressive testing and flexural testing to examine the mortars’ mechanical properties, and compression tests, triplet shear tests and diagonal compression tests for the masonry specimens. The results found that the strength of the masonry specimens was not necessarily associated with the mortar’s strength, but rather the cohesion between brick and mortar. In the material test, adding white cement had no noticeable effect on mortar strength. Meanwhile, in the masonry specimen, the effect of the added white cement was significant in terms of compressive and shear strength. This suggests that the bonding ratio between mortar and brick, which is an important factor influencing the behavior of bricks, was stronger with the addition of white cement. Furthermore, it was found that quicklime lumps had a lower strength than powdered hydrated lime. The test specimen with white cement added to powdered hydrated lime exhibited the greatest strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.