Fine-grained action detection is an important task with numerous applications in robotics and human-computer interaction. Existing methods typically utilize a two-stage approach including extraction of local spatio-temporal features followed by temporal modeling to capture long-term dependencies. While most recent papers have focused on the latter (long-temporal modeling), here, we focus on producing features capable of modeling fine-grained motion more efficiently. We propose a novel locally-consistent deformable convolution, which utilizes the change in receptive fields and enforces a local coherency constraint to capture motion information effectively. Our model jointly learns spatio-temporal features (instead of using independent spatial and temporal streams). The temporal component is learned from the feature space instead of pixel space, e.g. optical flow. The produced features can be flexibly used in conjunction with other long-temporal modeling networks, e.g. ST-CNN, DilatedTCN, and ED-TCN. Overall, our proposed approach robustly outperforms the original long-temporal models on two fine-grained action datasets: 50 Salads and GTEA, achieving F1 scores of 80.22% and 75.39% respectively. Source code is available at: https: //github.com/knmac/LCDC_release.
In automatic speech recognition (ASR), wideband (WB) and narrowband (NB) speech signals with different sampling rates typically use separate acoustic models. Therefore mixed-bandwidth (MB) acoustic modeling has important practical values for ASR system deployment. In this paper, we extensively investigate large-scale MB deep neural network acoustic modeling for ASR using 1,150 hours of WB data and 2,300 hours of NB data. We study various MB strategies including downsampling, upsampling and bandwidth extension for MB acoustic modeling and evaluate their performance on 8 diverse WB and NB test sets from various application domains. To deal with the large amounts of training data, distributed training is carried out on multiple GPUs using synchronous data parallelism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.