Aim: This study aimed to determine the use of probiotics Bifidobacterium spp. and Lactobacillus casei as alternative antibiotic growth promoters (AGPs) to improve growth performance and business analysis. Materials and Methods: This study used a completely randomized factorial design. The first factor was the time of administration (1, 2, 3, and 4 weeks) and the second was the use of probiotics (control without probiotics; 0.1% AGP and 0.5% Bifidobacterium spp. + 0.25% L. casei). One hundred and eighty laying hens (Lohmann strain), of 30 weeks old, were divided into 12 treatment groups, composed of five replicates, each consisting of three laying hens. Results: The results showed that using 0.5% Bifidobacterium spp. + 0.25% L. casei in weeks 1 and 2 showed the lowest feed intake (FI) (112.11-112.19 g/day), the highest egg weight (60.28 g) in the 1st week, the lowest feed conversion ratio (FCR) (2.21-2.23), and highest feed efficiency (44.75-45.25%) for 3-4 weeks, and the highest hen-day production (86.66-86.90%) for 3-4 weeks and the most profitable business analysis (IDR. 30,353). Conclusion: Based on the results, it can be concluded that the addition of 0.5% Bifidobacterium spp. + 25% L. casei probiotics can be used as a substitute for AGP; it can reduce the FI and FCR, increasing egg weight, feed efficiency, and hen-day production, as well as illustrating the results of the most profitable business analysis.
Background and Objectives: Use of antibiotics as growth promoters in animal feeds has been restricted due to the residues in poultry products such as egg and meat, furthermore to the antibiotic resistant of pathogenic bacteria. The prohibition of their use opens the opportunity for the use of non-antibiotic feed additives such as probiotics. The objectives of this study were to investigate the effect of the addition of Lactobacillus casei WB 315 and crude fish oil (CFO) to diets on growth performance, eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), low density lipoproteins (LDL), high density lipoprotein (HDL), and cholesterol levesl of broiler chickens. Materials and Methods: In this research, one-day old male broiler chicks were used and divided equally into four groups, namely a basal diet without L. casei WB 315 and without CFO (P0), basal diet supplemented with 0.5% L. casei WB 315 of total broiler basal feed (1.2 × 109 cfu/ml) and without CFO (P1), basal diet supplemented without L. casei WB 315 and 1% CFO of total broiler basal feed (P2), and basal diet supplemented with 0.5% L. casei WB 315 of total broiler basal feed (1.2 × 109 cfu/ml) and 1% CFO of total broiler basal feed (P3) for 35 days. Results: The results of addition 0.5% Lactobacillus casei WB 315 (1.2 × 109 cfu/ml) and 1% CFO of total broiler basal feed after 35 days showed significant difference among treatment in feed efficiency (p<0.05), feed conversion ratio (p<0.05), feed consumption (p<0.05), EPA (p<0.05), DHA (p<0.05), increase HDL (p<0.05), reduced the LDL (p<0.05), and reduce cholesterol (p<0.05) in meat broiler chicken. Conclusion: It is concluded that the addition of L. casei WB 315 and crude fish oil (CFO) could significant improve the growth performance (feed efficiency, feed conversion ratio, feed consumption) and could significantly improve EPA, DHA and increase HDL and decrease LDL in meat poultry product.
Background and Objectives: An experiment was designed to determine the effect of using lactic acid bacteria as alternative antibiotic growth promoters on external and internal quality of egg’s Coturnix coturnix japonica. Materials and Methods: Coturnix coturnix japonica (n=240, 14 weeks of age) were randomly distributed into six treatment groups. The treatments were P0 (free antibiotic feed), P1 (free antibiotic feed with 1 gram antibiotic growth promoters (AGP)/100kg feed), P2 (free antibiotic feed with 5 gram probiotic/100kg feed), P3 (free antibiotic feed with 10 grams probiotic/100kg feed), P4 (free antibiotic feed with 5 gram probiotic/200L drinking water), and P5 (free antibiotic feed with 10 gram probiotic/200L drinking water). Probiotic contained Lactobacillus casei (L. casei) and Lactobacillus rhamnosus (L. rhamnosus) culture (1.2 x 108 CFU/gram). To assess the quality parameters, twenty eggs were randomly collected from each treatment at the end of the experimental period, and the data were analysed using one way Anova. Results: Results of the external quality indicated that egg’s weight, length, and width, along with the shell weight and thickness were significantly different (P<0.05) after treatment. Likewise, the results of internal egg quality indicated that yolk color, height, width, and length, together with the albumen height, width, length, index and haugh unit were significantly different (P <0.05) after treatment. Conclusion: It was concluded from this research that dietary supplementation with probiotic which contains L. casei and L. rhamnosus could be used in laying Japanese quail with benefit on external and internal egg quality.
The purpose of this study was to determine the use of probiotics Lactobacillus acidophilus and Bifidobacterium sp on feed consumption and Hen Day Production (HDP), layer was infected with Escherichia coli. About 120 layers at 25 weeks of age were randomized into six treatments. The treatment consisted of factors a (infection and non-infection Escherichia coli) and factor b (basal feed, AGP and probiotics). The results of the study gave probiotics an effect (p <0.05) on feed consumption, HDP and egg weight. Infection factors have an effect (p <0.05) on HDP but have no effect (p> 0.05) on feed consumption and egg weight. There was interactions between probiotic and infection factors (p <0.05) on HDP and egg weight but there was no interaction (p> 0.05) between probiotic and infection factors on feed consumption. The highest feed consumption was found in the treatment of infectious probiotics is 114.7g, the highest HDP was treated with non-infectious probiotics is 98.6%, the highest egg weight was treated with non-infectious probiotics is 60.5 g. It could be concluded that the administration of probiotics can produce good production performance and high profits.
Salah satu cara yang digunakan di Indonesia dalam menanggulangi berlimpahnya jumlah sampah plastik di lingkungan perairan adalah dengan menggantikan kantong plastik berbahan polimer polietilen (PE) dengan plastik oxodegradable yang disebut oxium. Penelitian ini dilakukan dengan tujuan untuk melihat pengaruh mikroplastik polietilen jenis HDPE (High Density Polyethylene) dengan plastic oxodegradable oxium. Penelitian dilakukan dengan menggunakan mikroalga Tetraselmis chuii sebagai mikroorganisme yang akan mendapat perlakuan mikroplastik dengan konsentrasi yang berbeda. Dari Hasil pengukuran optical density untuk menentukan laju pertumbuhan mikroalga Tetraselmis Chuii menunjukkan bahwa laju pertumbuhan Tetraselmis dengan perlakuan mikroplastik polietilen mengalami penurunan yang signifikan dibandingkan dengan mikroplastik oxium. Konsentrasi mikroplastik ikut berperan dalam menentukan laju pertumbuhan Tetraselmis chuii di mana pada perlakuan mikroplastik oxium terjadi penurunan hingga 37,66% pada konsentrasi mikroplastik 300mg/500mL dan 81,70% pada perlakuan mikroplastik polietilen dengan konsentrasi 200mg/500mL. Mikroplastik polietilen dan oxium memberikan dampak negatif pada organisme tingkat rendah disebabkan oleh kemampuannya dalam melepas bahan aditif yang bersifat toksik sehingga diperlukan solusi yang lebih baik untuk menggantikan fungsi plastik dengan bahan yang lebih ramah bagi lingkungan hidup. ABSTRACTOne of the methods used in Indonesia in tackling the abundance of plastic waste in the aquatic environment is to replace plastic bags made of polyethylene (PE) polymer with oxodegradable plastic called oxium. This research was conducted with the aim of examining the effect of HDPE (High Density Polyethylene) microplastic polyethylene with oxodegradable oxium plastic. The research was conducted using the microalgae Tetraselmis chuii as microorganisms that will receive microplastic treatment with different concentrations. From the results of optical density measurements to determine the growth rate of Tetraselmis chuii microalgae, it was shown that the growth rate of Tetraselmis with polyethylene microplastics treatment decreased significantly compared to oxium microplastics. The concentration of microplastics played a role in determining the growth rate of Tetraselmis chuii where in the oxium microplastic treatment there was a decrease of up to 37.66% at the microplastic concentration of 300mg/500mL and 81.70% at the polyethylene microplastic treatment with a concentration of 200mg/500mL. Polyethylene and oxyum microplastics have a negative impact on low-level organisms due to their ability to release toxic additives so that better solutions are needed to replace the function of plastics with materials that are more environmentally friendly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.