Background Stress, anxiety and impeded sleep are a frequent feature of life in modern societies. Across socioeconomic strata, stress, anxiety and ineffective sleep detract from healthful living and serve as precursors of various ailments. The use of herbs to offset these antecedents and outcomes has greatly increased in recent years. Ashwagandha, an adaptogenic Ayurvedic herb, has been often used to combat and reduce stress and thereby enhance general wellbeing. While there have been other studies documenting the use of Ashwagandha for stress resistance, this is the first study to use a high-concentration root extract while also varying the dosage substantially. Therefore, this is the first study to offer insight into dose-response of a high concentration root extract.
Introduction Insomnia is a prevalent sleep disorder that can profoundly impact a person's physical health and mental wellbeing. Most of the currently available drugs for insomnia exert adverse effects. Hence, alternative herbal therapies could be effective in treating insomnia. Ashwagandha, a proven "Rasayana" from ancient Ayurveda is having the required potential to treat insomnia. Objective To determine the efficacy and safety of Ashwagandha root extract in patients with insomnia and anxiety. Methods This was a randomized, double-blind, placebo-controlled study conducted at Prakruti Hospital, Kalwa, Maharashtra, India. A total of 60 patients were randomly divided into two groups: test (n = 40) and placebo (n = 20) in a randomization ratio of 2:1. Test product was a capsule containing highest concentration full-spectrum Ashwagandha root extract 300 mg, and the placebo was an identical capsule containing starch. Both treatments were given twice daily with milk or water for 10 weeks. Sleep actigraphy (Respironics Philips) was used for assessment of sleep onset latency (SOL), total sleep time (TST), sleep efficiency (SE) and wake after sleep onset (WASO). Other assessments were total time in bed (sleep log), mental alertness on rising, sleep quality, Pittsburgh Sleep Quality Index (PSQI), and Hamilton Anxiety Rating Scale (HAM-A) scales. Results Two patients, one from each group, did not complete study and the per-protocol dataset (n = 58) included 29 and 19 patients from test and placebo, respectively. The baseline parameters were similar in the two groups at baseline. The sleep onset latency was improved in both test and placebo at five and 10 weeks. However, the SOL was significantly shorter (p, 0.019) after 10 weeks with test [29.00 (7.14)] compared to placebo [33.94 (7.65)]. Also, significant improvement in SE scores was observed with Ashwagandha which was 75.63 (2.70) for test at the baseline and increased to 83.48 (2.83) after 10 weeks, whereas for placebo the SE scores changed from 75.14
Background Ashwagandha is an excellent adaptogen that is being used since ancient times in Ayurvedic medicine. Traditionally, it is used for various ailments and general well-being, including the treatment of geriatric patients. Managing quality of life (QoL) remains a challenge for the elderly population, especially joint pain management, sleep, and general well-being. With a growing global elderly population, QoL management with efficient medication and supplementation is the major healthcare requirement. Objective The objective of this study was to assess the safety, efficacy, and tolerability of Ashwagandha (Withania somnifera (L.) Dunal.) root extract on the improvement of general health and sleep in elderly people. Methods This 12-week, prospective, randomized, double-blind, placebo-controlled study was conducted on individuals of either gender aged between 65-80 years. Participants were randomized to receive Ashwagandha root extract at a dose of 600 mg/day (n = 25) orally, or identical placebo capsules with the same dose (n = 25) for 12 weeks. Efficacy was assessed using the WHOQOL-BREF questionnaire, sleep quality, mental alertness on rising, and Physician's Global Assessment of Efficacy to Therapy (PGAET). The safety and tolerability were assessed using the clinical adverse events reporting and Patient's Global Assessment of Tolerability to Therapy (PGATT).
Background: Levonadifloxacin is a novel broad-spectrum antibiotic belonging to the benzoquinolizine subclass of quinolones. It is available in intravenous as well as oral formulation for the treatment of infections caused by common Gram-positive bacterial pathogens including methicillin-resistant Staphylococcus aureus (MRSA). Patients and Methods: This study retrospectively assessed the real-world safety and efficacy of levonadifloxacin (oral and/or IV) in the treatment of 1229 patients across various clinical conditions. Study outcomes were clinical and microbiological success at the end of therapy. Results: The mean duration of levonadifloxacin therapy was 7.2 days, with a time to clinical improvement averaging at 4 days. Three hundred and three patients received oral therapy, 875 received IV, and 51 received a combination of IV followed by oral therapy. Patients were prescribed levonadifloxacin for skin and soft-tissue infections, diabetic foot infections, septicemia, catheter-related bloodstream infections, bone and joint infections, febrile neutropenia, and respiratory infections including COVID-19 pneumonia. High clinical success rates of 98.3%, 93.7%, and 96.1% with oral, IV, and IV followed by oral levonadifloxacin, respectively, were obtained. Only 11 mild adverse events were reported in 9 patients which included constipation, diarrhea, hyperglycemia, nausea, fatigue, and vomiting. Overall, 96.3% and 97.3% of investigators rated the efficacy and safety of levonadifloxacin as “good to excellent.” Conclusions: An excellent safety and efficacy profile of levonadifloxacin was observed in this study making it a suitable treatment option for management of various bacterial infections, including those caused by resistant Gram-positive pathogens such as MRSA and quinolone-resistant S. aureus .
Due to the variation of solar irradiance, temperature and shading conditions, the power generated by a photovoltaic (PV) module and hence the power delivered to the load changes drastically, which imposes the need for analysis of a complete PV system to get the maximum power under these natural variable conditions. In this paper, a complete off-grid PV module based power generation system has been designed and simulated using MATLAB/Simulink and performance has been scrutinized using the value of standard solar irradiance about 1 KW/m-2 for Bangladesh. The simulation model includes solar PV module, the converter power stage with MPPT control and charge controlling functions and here performance of each block has been examined conspicuously. Eventually, it has been found that the model is quite competent to simulate both the I-V and P-V characteristics of a PV module and based on the result it has been predicted that the performance of several modules or even PV array connected in series and/or in parallel with the delivery of maximum power can be tested under different solar irradiance and temperature conditions. DOI: http://dx.doi.org/10.3329/dujs.v62i2.21977 Dhaka Univ. J. Sci. 62(2): 127-132, 2014 (July)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.