This work investigated the removal of phenol from petroleum wastewater by the electro‐oxidation process. The experimental design was developed on a pilot‐scale electro‐oxidation system equipped with a cylindrical shape of graphite electrodes as an anode and stainless‐steel electrodes as a cathode. An initial study was performed based on operating variables such as current density and time on real petroleum wastewater. The optimum conditions were obtained as a current density of 3 mA/cm2 and time 15 min. Under these applied optimum conditions, complete phenol removal from an initial concentration of about 6.8 mg/L was achieved. Also, 50–60% removal of organic matter in terms of chemical oxygen demand (COD) and biological oxygen demand (BOD). The removal of organic matter using electro‐oxidation requires a long reaction time. Also, the economic study indicated that the energy consumption was determined to be 0.79 kWh/m3 and the operating cost was 0.051 $/m3 which is very economical compared with conventional methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.