Polyacrylonitrile (PAN) nanofiber mats are typical precursors for carbon nanofibers. They can be fixed or even elongated during stabilization and subsequent carbonization to gain straight, mechanically robust carbon nanofibers. These processes necessitate additional equipment or are—if the nanofiber mats are just fixed at the edges—prone to resulting in the specimens breaking, due to an uneven force distribution. Hence, we showed in a previous study that electrospinning PAN on aluminum foils and stabilizing them fixed on these substrates, is a suitable solution to keep the desired morphology after stabilization and incipient carbonization. Here, we report on the influence of different metallic and semiconductor substrates on the physical and chemical properties of the nanofiber mats after stabilization and carbonization at temperatures up to 1200 °C. For stabilization on a metal substrate, an optimum stabilization temperature of slightly above 240 °C was found, approached with a heating rate of 0.25 K/min. Independent from the substrate material, SEM images revealed less defect fibers in the nanofiber mats stabilized and incipiently carbonized on a metal foil. Finally, high-temperature carbonization on different substrates is shown to allow for producing metal/carbon nano-composites.
Polyacrylonitrile (PAN) nanofibers, prepared by electrospinning, are often used as a precursor for carbon nanofibers. The thermal carbonization process necessitates a preceding oxidative stabilization, which is usually performed thermally, i.e., by carefully heating the electrospun nanofibers in an oven. One of the typical problems occurring during this process is a strong deformation of the fiber morphologies—the fibers become thicker and shorter, and show partly undesired conglutinations. This problem can be solved by stretching the nanofiber mat during thermal treatment, which, on the other hand, can lead to breakage of the nanofiber mat. In a previous study, we have shown that the electrospinning of PAN on aluminum foils and the subsequent stabilization of this substrate is a simple method for retaining the fiber morphology without breaking the nanofiber mat. Here, we report on the impact of different aluminum foils on the physical and chemical properties of stabilized PAN nanofibers mats, and on the following incipient carbonization process at a temperature of max. 600 °C, i.e., below the melting temperature of aluminum.
This article deals with the development and comparison of eight different electrodes made out of a cotton fabric substrate, a silver coated yarn and partly conductive finishes, i.e. a PEDOT:PSS Orgacon ICP 1050 dip-coating and a Powersil coating. The purpose is the application especially in the medical field of angiopathy like for bioimpedance measurements during compression therapies. To be able to compare the suitability of the electrodes, various tests have been performed of the coating abrasion resistance, the stability of electrical resistance values, as well as resistance and bioimpedance measurements. Significant differences between the electrodes regarding their resilience and resistance that are visualized in a value-added analysis were found, with one hand-embroidered, one machine-sewn and one commercial electrode showing optimum properties.
The electrocardiogram (ECG) is one of the most commonly measured biosignals. In particular, textile electrodes allow for the measuring of long-term ECG without skin irritation or other discomforts for the patient. Such textile electrodes, however, usually suffer from insufficient or unreliable skin contact. Thus, developing textile electrodes is impeded by the often-complicated differentiation between signal artifacts due to moving and breathing and artifacts related to unreliable skin contact. Here, we suggest a simple method of using 50/60 Hz power grid noise to evaluate the skin contact of different textile electrodes in comparison with commercial glued electrodes. We use this method to show the drying of wetted skin under an embroidered electrode as well as sweating of the originally dry skin under a coated electrode with high water vapor resistance.
Low-cost sensors and single circuit boards such as Arduino and Raspberry Pi have increased the possibility of measuring biosignals by smart textiles with embedded electronics. One of the main problems with such e-textiles is their washability. While batteries are usually removed before washing, single-board computers and microcontrollers, as well as electronic sensors, would ideally be kept inside a user-friendly smart garment. Here, we show results of washing tests with optical pulse sensors, which can be used in smart gloves not only for hospitalized patients, and ATtiny85 as an example of a single-board microcontroller, sewn onto different cotton fabrics. We report that even without any encapsulation, all tested sensors and microcontrollers endured 10 washing cycles at 30–60 °C without defects. For easier garment integration, we suggest using an ESP8266 with integrated Wi-Fi functionality and offer a new program code to measure beats per minute (BMP) with optimized accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.