The effect of viscoelasticity of epoxy adhesive on creep behavior in the adhesive layer of a double-lap joint is studied in this paper. The joint is comprised of three elastic single isotropic adherend layers joined by an epoxy adhesive that is under shear loading. Prony series is used to modeling the relaxation modulus of epoxy adhesive. The differential equation is derived in Laplace domain, and numerical inversion from the Laplace domain to the time domain is achieved by the Fixed Talbot method. Results show that for an impulse load of 100N, maximum shear stress in the adhesive layer is reduced to 38% of its initial value after almost 12 days and 79% of its initial value over a very long time. The rate of increase in tensile load P has a direct effect on peak shear stress developed in the adhesive layer and holding P 0 as a constant, increasing will lower the induced peak shear stress in the joint. Also, an increase in the thickness of the adhesive layer reduced the induced peak shear stress and strain in the joint.
The present study focuses on the nonlinear analysis of the dynamical behavior of layered structures, including interfacial friction in the presence of the stick-slip phenomenon and large deformation. To achieve a proper outlook for the two-layer structure's behavior, it is essential to precisely realize the mechanisms of motion. Taking the dry friction into account, coupled equations of the transversal and longitudinal large vibration of two-layers are derived and nondimensionalized. Furthermore, the free and forced vibration of the aforementioned system is investigated. From the results of the numerical simulation, it is observed that there exist quasi-periodic and stick–slip chaotic motions in the system. The results demonstrate that the single mode method usually utilized may lead to incorrect conclusions and, instead, the higher order mode method should be employed. A comparative study with ANSYS is developed to verify the accuracy of the proposed approach.
This paper attempts to present a new analysis for dynamical behavior of two-layer beams with frictional interface which held together in a pressurized environment, including stick-slip nonlinear phenomenon. To achieve a proper outlook of two-layer beam structures behavior, it is essential to realize the mechanisms of motion precisely. Coupled equation of transversal and longitudinal vibration of two-layers in the presence of dry friction is derived and nondimensionalized. Furthermore, free and forced vibration of the mentioned system is investigated and the system dynamics is monitored via Poincare maps and Lyapunov exponent analysis. A comparative study with ANSYS is developed to show the accuracy of the proposed approach.
Limit pressures have been calculated for the case of two identical flush neighbouring radial nozzles in a spherical pressure vessel. The nozzle and vessel radius and thickness have been kept fixed, but the separation angle 2α has been varied. Four cases have been analysed, including that where the nozzles touch, and the results compared to the value for a single nozzle. For these nozzles very little decrease occurred for any of the α. The effect of displacement on pressure carrying capacity was also investigated and shown to be beneficial, so that limit pressure results may be used with confidence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.