Multiphase flow phenomena in single micro- and minichannels have been widely studied. Characteristics of two-phase flow through a large array of microchannels are investigated here. An air-water mixture is used to represent the two phases flowing through a microchannel array representative of those employed in practical applications. Flow distribution of the air and water flow across 52 parallel microchannels of 0.3 mm hydraulic diameter is visually investigated using high speed photography. Two microchannel configurations are studied and compared, with mixing features incorporated into the second configuration. Slug and annular flow regimes are observed in the channels. Void fractions and interfacial areas are calculated for each channel from these observations. The flow distribution is tracked at various lengths along the microchannel array sheets. Statistical distributions of void fraction and interfacial area along the microchannel array are measured. The design with mixing features yields improved flow distribution. Void fraction and interfacial area change along the length of the second configuration, indicating a change in fluid distribution among the channels. The void fraction and interfacial area results are used to predict the performance of different microchannel array configurations for heat and mass transfer applications. Results from this study can help inform the design of compact thermal-fluid energy systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.