The crowd counting task has become a pillar for crowd control as it provides information concerning the number of people in a scene. It is helpful in many scenarios such as video surveillance, public safety, and future event planning. To solve such tasks, researchers have proposed different solutions. In the beginning, researchers went with more traditional solutions, while recently the focus is on deep learning methods and, more specifically, on Convolutional Neural Networks (CNNs), because of their efficiency. This review explores these methods by focusing on their key differences, advantages, and disadvantages. We have systematically analyzed algorithms and works based on the different models suggested and the problems they are trying to solve. The main focus is on the shift made in the history of crowd counting methods, moving from the heuristic models to CNN models by identifying each category and discussing its different methods and architectures. After a deep study of the literature on crowd counting, the survey partitions current datasets into sparse and crowded ones. It discusses the reviewed methods by comparing their results on the different datasets. The findings suggest that the heuristic models could be even more effective than the CNN models in sparse scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.