The past few years have witnessed a substantial increase in cyberattacks on Internet of Things (IoT) devices and their networks. Such attacks pose a significant threat to organizational security and user privacy. Utilizing Machine Learning (ML) in Intrusion Detection Systems (NIDS) has proven advantageous in countering novel zero-day attacks. However, the performance of such systems relies on several factors, one of which is prediction time. Processing speed in anomaly-based NIDS depends on a few elements, including the number of features fed to the ML model. NetFlow, a networking industry-standard protocol, offers many features that can be used to predict malicious attacks accurately. This paper examines NetFlow features and assesses their suitability in classifying network traffic. Our paper presents a model that detects attacks with (98–100%) accuracy using as few as 13 features. This study was conducted using a large dataset of over 16 million records released in 2021.
The fish industry experiences substantial illegal, unreported, and unregulated (IUU) activities within traditional supply chain systems. Blockchain technology and the Internet of Things (IoT) are expected to transform the fish supply chain (SC) by incorporating distributed ledger technology (DLT) to build trustworthy, transparent, decentralized traceability systems that promote secure data sharing and employ IUU prevention and detection methods. We have reviewed current research efforts directed toward incorporating Blockchain in fish SC systems. We have discussed traceability in both traditional and smart SC systems that make use of Blockchain and IoT technologies. We demonstrated the key design considerations in terms of traceability in addition to a quality model to consider when designing smart Blockchain-based SC systems. In addition, we proposed an Intelligent Blockchain IoT-enabled fish SC framework that uses DLT for the trackability and traceability of fish products throughout harvesting, processing, packaging, shipping, and distribution to final delivery. More precisely, the proposed framework should be able to provide valuable and timely information that can be used to track and trace the fish product and verify its authenticity throughout the chain. Unlike other work, we have investigated the benefits of integrating machine learning (ML) into Blockchain IoT-enabled SC systems, focusing the discussion on the role of ML in fish quality, freshness assessment and fraud detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.