Cockayne syndrome (CS) is a rare disease caused by mutations in ERCC6/CSB or ERCC8/CSA. We report here the clinical, genetic, and functional analyses of three unrelated patients mutated in ERCC6/CSB with a severe phenotype. After clinical examination, two patients were investigated via next generation sequencing, targeting seventeen Nucleotide Excision Repair (NER) genes. All three patients harbored a novel, c.3156dup, homozygous mutation located in exon 18 of ERCC6/CSB that affects the C-terminal region of the protein. Sanger sequencing confirmed the mutation and the parental segregation in the three families, and Western blots showed a lack of the full-length protein. NER functional impairment was shown by reduced recovery of RNA synthesis with proficient unscheduled DNA synthesis after UV-C radiations in patient-derived fibroblasts. Despite sharing the same mutation, the clinical spectrum was heterogeneous among the three patients, and only two patients displayed clinical photosensitivity. This novel ERCC6 variant in Tunisian patients suggests a founder effect and has implications for setting-up prenatal diagnosis/genetic counselling in North Africa, where this disease is largely undiagnosed. This study reveals one of the rare cases of CS clinical heterogeneity despite the same mutation. Moreover, the occurrence of an identical homozygous mutation, which either results in clinical photosensitivity or does not, strongly suggests that this classic CS symptom relies on multiple factors.
Background Cockayne syndrome (CS) is a rare autosomal recessive disorder caused by mutations in ERCC6/CSB or ERCC8/CSA that participate in the transcription-coupled nucleotide excision repair (TC-NER) of UV-induced DNA damage. CS patients display a large heterogeneity of clinical symptoms and severities, the reason of which is not fully understood, and that cannot be anticipated in the diagnostic phase. In addition, little data is available for affected siblings, and this disease is largely undiagnosed in North Africa. Methods We report here the clinical description as well as genetic and functional characterization of eight Tunisian CS patients, including siblings. These patients, who belonged to six unrelated families, underwent complete clinical examination and biochemical analyses. Sanger sequencing was performed for the recurrent mutation in five families, and targeted gene sequencing was done for one patient of the sixth family. We also performed Recovery RNA Synthesis (RRS) to confirm the functional impairment of DNA repair in patient-derived fibroblasts. Results Six out of eight patients carried a homozygous indel mutation (c.598_600delinsAA) in exon 7 of ERCC8, and displayed a variable clinical spectrum including between siblings sharing the same mutation. The other two patients were siblings who carried a homozygous splice-site variant in ERCC8 (c.843+1G>C). This last pair presented more severe clinical manifestations, which are rarely associated with CSA mutations, leading to gastrostomy and hepatic damage. Impaired TC-NER was confirmed by RRS in six tested patients. Conclusions This study provides the first deep characterization of case series of CS patients carrying CSA mutations in North Africa. These mutations have been described only in this region and in the Middle-East. We also provide the largest characterization of multiple unrelated patients, as well as siblings, carrying the same mutation, providing a framework for dissecting elusive genotype–phenotype correlations in CS.
Background Cockayne syndrome (CS) is a rare autosomal recessive disorder caused by mutations in ERCC6/CSB or ERCC8/CSA that participate in transcription-coupled nucleotide excision repair (TC-NER) of UV-induced DNA damage. CS patients display a large heterogeneity of clinical symptoms and severities, the reason of which is not fully understood, and little data is available for affected siblings. CS is largely undiagnosed in North Africa. Methods We report here the clinical description as well as genetic and functional characterization of eight North African CS patients, including siblings. These patients, who belonged to six unrelated families, underwent complete clinical examination and biochemical analyses. Sanger sequencing was performed for the recurrent mutation in five families, and targeted gene sequencing for one patient of the other family. We also performed RRS (Recovery RNA Synthesis) to confirm the functional impairment of DNA repair in the identified mutations. Results Six out of eight patients carried a homozygous indel mutation (c.598_600delinsAA) in exon 7 of ERCC8, and displayed a variable clinical spectrum, including between siblings, despite sharing the same mutation. The other two patients were Tunisian siblings who carried a homozygous splice-site variant in ERCC8 (c.843 + 1 G > C). They presented more severe clinical manifestations, which are in general rarely associated with CSA mutations, leading to gastrostomy and hepatic damage. Impaired TC-NER was confirmed by RRS in six tested patients. Conclusions This study provides the first deep characterization of case series of rare CS-A patients in North Africa. They carry mutations described to date only in this region and the Middle-East. We also provide the largest characterization of unrelated patients, as well as siblings, with the same mutation, providing a framework for dissecting elusive genotype-phenotype correlations in CS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.