The efficient degradation of a toxic antibiotic from an aqueous solution is essential for environmental protection. Our research aimed to fabricate a bismuth vanadate (BiVO4) catalyst via a facile hydrothermal method. The prepared catalyst exhibited a monoclinic phase with a band gap energy of 2.33 eV, indicating the excellent visible-light-active properties of a semiconductor. The photocatalytic performance of the synthesized BiVO4 catalyst was studied by determining the removal of tetracycline (TC) and oxytetracycline (OTC) antibiotics. After 240 min, under sunlight conditions, a high performance of 72% and 83% degradation of TC and OTC, respectively, was achieved. The photocatalytic degradation of the antibiotics correlates well with a first-order reaction, with a high rate constant of 0.0102 min−1. Photogenerated electrons and holes played an important role in the removal of the pollutant. After photocatalytic study, the structural stability of the prepared bismuth vanadate photocatalyst was confirmed. The photocatalyst provided a promising performance even after five successive runs. The result indicates the excellent cycling ability of the sample. The present work demonstrates a promising route for the preparation of a BiVO4 catalyst for the complete removal of toxic antibiotics in aqueous solutions.
A CdS photocatalyst was synthesized successfully at low temperature via a catalyst-free hydrothermal technique which is simple, green and also easily controlled.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.