Artificial intelligence (AI) based business process optimization has a significant impact on a country’s economic development. We argue that the use of artificial neural networks in business processes will help optimize these processes ensuring the necessary level in the functioning and compliance with the foundations of sustainable development. In this paper, we proposed a mathematical model using AI to detect outliers in the daily return of Saudi stock market (Tadawul). An outlier is defined as a data point that deviates too much from the rest of the observations in a data sample. Based on the Engle and Granger Causality test, we selected inflation rate, repo rate, and oil prices as input variables. In order to build the mathematical model, we first used the Tukey method to detect outliers in the stock return data from Tadawul that are collected during the period from October 2011 to December 2019. In this way, we categorized the stock return data into two classes, namely, outliers and nonoutliers. These data are further used to train artificial neural network in conjunction with particle swarm optimization algorithm. In order to assess the performance of the proposed model, we employed the mean squared error function. Our proposed model is signified by the mean squared error value of 0.05. The proposed model is capable of detecting outlier values directly from the inflation rate, repo rate, and oil prices. The proposed model can be helpful in developing and applying intelligent optimization techniques to solve problems in business processes.
This study investigates the problem of outlier detection based on discrete wavelet transform in the context of time series data where the identification and treatment of outliers constitute an important component. An outlier is defined as a data point that deviates so much from the rest of observations within a data sample. In this work we focus on the application of the traditional method suggested by Tukey (1977) for detecting outliers in the closed price series of the Saudi Arabia stock market (Tadawul) between Oct. 2011 and Dec. 2019. The method is applied to the details obtained from the MODWT (Maximal-Overlap Discrete Wavelet Transform) of the original series. The result show that the suggested methodology was successful in detecting all of the outliers in the series. The findings of this study suggest that we can model and forecast the volatility of returns from the reconstructed series without outliers using GARCH models. The estimated GARCH volatility model was compared to other asymmetric GARCH models using standard forecast error metrics. It is found that the performance of the standard GARCH model were as good as that of the gjrGARCH model over the out-of-sample forecasts for returns among other GARCH specifications.
The aim of this paper is to address the problem of variance break detection in time series in wavelet domain. The maximal overlapped discrete wavelet transform (MODWT) decomposes the series variance across scales into components known as the wavelet variances. We introduce all scale wavelet coefficients based test statistic that allows detecting a break in the homogeneity of the variance of a series through changes in the mean of wavelet variances. The statistic makes use of the traditional CUSUM (cumulative sum) based test designed to test for a break in the mean and constructed using cumulative sums of the square of wavelet coefficients. Under moments and mixing conditions, the test statistic satisfies the functional central limit theorem (FCLT) for a broad class of time series models. The overall performance of our test statistic is compared to the traditional Inclan [8] test statistic. The effectiveness of our statistic is supported by good performances reported in simulations and is as reliable as the traditional statistic. Our method provides a nonparametric test procedure that can be applied to a large class of linear and non linear models. We illustrate the practical use of our test procedure with the quarterly percentage changes in the Americans personal savings data set over the period 1970-2016. Both statistics detect a break in the variance in the second quarter of 2001.
We introduce a new wavelet based procedure for detecting outliers in financial discrete time series. The procedure focuses on the analysis of residuals obtained from a model fit, and applied to the Generalized Autoregressive Conditional Heteroskedasticity (GARCH) like model, but not limited to these models. We apply the Maximal-Overlap Discrete Wavelet Transform (MODWT) to the residuals and compare their wavelet coefficients against quantile thresholds to detect outliers. Our methodology has several advantages over existing methods that make use of the standard Discrete Wavelet Transform (DWT). The series sample size does not need to be a power of 2 and the transform can explore any wavelet filter and be run up to the desired level. Simulated wavelet quantiles from a Normal and Student t-distribution are used as threshold for the maximum of the absolute value of wavelet coefficients. The performance of the procedure is illustrated and applied to two real series: the closed price of the Saudi Stock market and the S&P 500 index respectively. The efficiency of the proposed method is demonstrated and can be considered as a distinct important addition to the existing methods
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.