In recent years, deep neural networks have become a fascinating and influential research subject, and they play a critical role in video processing and analytics. Since, video analytics are predominantly hardware centric, exploration of implementing the deep neural networks in the hardware needs its brighter light of research. However, the computational complexity and resource constraints of deep neural networks are increasing exponentially by time. Convolutional neural networks are one of the most popular deep learning architecture especially for image classification and video analytics. But these algorithms need an efficient implement strategy for incorporating more real time computations in terms of handling the videos in the hardware. Field programmable Gate arrays (FPGA) is thought to be more advantageous in implementing the convolutional neural networks when compared to Graphics Processing Unit (GPU) in terms of energy efficient and low computational complexity. But still, an intelligent architecture is required for implementing the CNN in FPGA for processing the videos. This paper introduces a modern high-performance, energy-efficient Bat Pruned Ensembled Convolutional networks (BPEC-CNN) for processing the video in the hardware. The system integrates the Bat Evolutionary Pruned layers for CNN and implements the new shared Distributed Filtering Structures (DFS) for handing the filter layers in CNN with pipelined data-path in FPGA. In addition, the proposed system adopts the hardware-software co-design methodology for an energy efficiency and less computational complexity. The extensive experimentations are carried out using CASIA video datasets with ARTIX-7 FPGA boards (number) and various algorithms centric parameters such as accuracy, sensitivity, specificity and architecture centric parameters such as the power, area and throughput are analyzed. These results are then compared with the existing pruned CNN architectures such as CNN-Prunner in which the proposed architecture has been shown 25% better performance than the existing architectures.
Face recognition is a big challenge in the research field with a lot of problems like misalignment, illumination changes, pose variations, occlusion, and expressions. Providing a single solution to solve all these problems at a time is a challenging task. We have put some effort to provide a solution to solving all these issues by introducing a face recognition model based on local tetra patterns and spatial pyramid matching. The technique is based on a procedure where the input image is passed through an algorithm that extracts local features by using spatial pyramid matching and max-pooling. Finally, the input image is recognized using a robust kernel representation method using extracted features. The qualitative and quantitative analysis of the proposed method is carried on benchmark image datasets. Experimental results showed that the proposed method performs better in terms of standard performance evaluation parameters as compared to state-of-the-art methods on AR, ORL, LFW, and FERET face recognition datasets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.