Offensive Content Warning: This paper contains offensive language only for providing examples that clarify this research and do not reflect the authors' opinions. Please be aware that these examples are offensive and may cause you distress.The subjectivity of recognizing hate speech makes it a complex task. This is also reflected by different and incomplete definitions in NLP. We present hate speech criteria, developed with perspectives from law and social science, with the aim of helping researchers create more precise definitions and annotation guidelines on five aspects: (1) target groups, (2) dominance, (3) perpetrator characteristics, (4) type of negative group reference, and the (5) type of potential consequences/effects. Definitions can be structured so that they cover a more broad or more narrow phenomenon. As such, conscious choices can be made on specifying criteria or leaving them open. We argue that the goal and exact task developers have in mind should determine how the scope of hate speech is defined. We provide an overview of the properties of English datasets from hatespeechdata.com that may help select the most suitable dataset for a specific scenario.
Despite their success, modern language models are fragile. Even small changes in their training pipeline can lead to unexpected results. We study this phenomenon by examining the robustness of ALBERT (Lan et al., 2020) in combination with Stochastic Weight Averaging (SWA)-a cheap way of ensembling-on a sentiment analysis task (SST-2). In particular, we analyze SWA's stability via CheckList criteria (Ribeiro et al., 2020), examining the agreement on errors made by models differing only in their random seed. We hypothesize that SWA is more stable because it ensembles model snapshots taken along the gradient descent trajectory. We quantify stability by comparing the models' mistakes with Fleiss' Kappa (Fleiss, 1971) and overlap ratio scores. We find that SWA reduces error rates in general; yet the models still suffer from their own distinct biases (according to CheckList).
Despite their success, modern language models are fragile. Even small changes in their training pipeline can lead to unexpected results. We study this phenomenon by examining the robustness of ALBERT (Lan et al., 2020) in combination with Stochastic Weight Averaging (SWA)-a cheap way of ensembling-on a sentiment analysis task (SST-2). In particular, we analyze SWA's stability via CheckList criteria (Ribeiro et al., 2020), examining the agreement on errors made by models differing only in their random seed. We hypothesize that SWA is more stable because it ensembles model snapshots taken along the gradient descent trajectory. We quantify stability by comparing the models' mistakes with Fleiss' Kappa (Fleiss, 1971) and overlap ratio scores. We find that SWA reduces error rates in general; yet the models still suffer from their own distinct biases (according to CheckList).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.