Population viability analysis (PVA) entails calculation of extinction risk, as defined by various extinction metrics, for a study population. These calculations strongly depend on the form of the population growth model and inclusion of demographic and/or environmental stochasticity. Form of the model and its parameters are determined based on observed population time series data. A typical population time series, consisting of estimated population sizes, inevitably has some observation error and likely has missing observations. In this paper, we present a likelihood based PVA in the presence of observation error and missing data. We illustrate the importance of incorporation of observation error in PVA by reanalyzing the population time series of song sparrow Melospiza melodia on Mandarte Island, British Columbia, Canada from 1975–1998. Using Akaike information criterion we show that model with observation error fits the data better than the one without observation error. The extinction risks predicted by with and without observation error models are quite different. Further analysis of possible causes for observation error revealed that some component of the observation error might be due to unreported dispersal. A complete analysis of such data, thus, would require explicit spatial models and data on dispersal along with observation error. Our conclusions are, therefore, two‐fold: 1) observation errors in PVA matter and 2) integrating these errors in PVA is not always enough and can still lead to important biases in parameter estimates if other processes such as dispersal are ignored.
Stochastic versions of Gompertz, Ricker, and various other dynamics models play a fundamental role in quantifying strength of density dependence and studying long-term dynamics of wildlife populations. These models are frequently estimated using time series of abundance estimates that are inevitably subject to observation error and missing data. This issue can be addressed with a state-space modeling framework that jointly estimates the observed data model and the underlying stochastic population dynamics (SPD) model. In cases where abundance data are from multiple locations with a smaller spatial resolution (e.g., from mark-recapture and distance sampling studies), models are conventionally fitted to spatially pooled estimates of yearly abundances. Here, we demonstrate that a spatial version of SPD models can be directly estimated from short time series of spatially referenced distance sampling data in a unified hierarchical state-space modeling framework that also allows for spatial variance (covariance) in population growth. We also show that a full range of likelihood based inference, including estimability diagnostics and model selection, is feasible in this class of models using a data cloning algorithm. We further show through simulation experiments that the hierarchical state-space framework introduced herein efficiently captures the underlying dynamical parameters and spatial abundance distribution. We apply our methodology by analyzing a time series of line-transect distance sampling data for fin whales (Balaenoptera physalus) off the U.S. west coast. Although there were only seven surveys conducted during the study time frame, 1991-2014, our analysis detected presence of strong density regulation and provided reliable estimates of fin whale densities. In summary, we show that the integrative framework developed herein allows ecologists to better infer key population characteristics such as presence of density regulation and spatial variability in a population's intrinsic growth potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.