ortho-Phenylenes represent a fundamental but relatively unexplored class of conjugated molecular architecture. We have developed a robust synthetic approach to monodisperse o-phenylene oligomers which we have demonstrated by synthesizing a homologous series up to the dodecamer. The o-phenylenes exhibit complex conformational behavior but are biased toward a specific 2-fold-symmetric conformation which we believe corresponds to a stacked helix. Surprisingly, the series exhibits long-range delocalization, as measured by bathochromic shifts in UV/vis spectra. Although the overall magnitude of the shifts is modest (but comparable to some other classes of conjugated materials), the effective conjugation length of the series is approximately eight repeat units. The oligomers also exhibit an unusual hypsochromic shift in their fluorescence spectra with increasing length. The origin of these trends is discussed in the context of conformational analysis and DFT calculations of the frontier molecular orbitals for the series.
The spontaneous assembly of aromatic cation radicals (D(+•)) with their neutral counterpart (D) affords dimer cation radicals (D(2)(+•)). The intermolecular dimeric cation radicals are readily characterized by the appearance of an intervalence charge-resonance transition in the NIR region of their electronic spectra and by ESR spectroscopy. The X-ray crystal structure analysis and DFT calculations of a representative dimer cation radical (i.e., the octamethylbiphenylene dimer cation radical) have established that a hole (or single positive charge) is completely delocalized over both aromatic moieties. The energetics and the geometrical considerations for the formation of dimer cation radicals is deliberated with the aid of a series of cyclophane-like bichromophoric donors with drastically varied interplanar angles between the cofacially arranged aryl moieties. X-ray crystallography of a number of mixed-valence cation radicals derived from monochromophoric benzenoid donors established that they generally assemble in 1D stacks in the solid state. However, the use of polychromophoric intervalence cation radicals, where a single charge is effectively delocalized among all of the chromophores, can lead to higher-order assemblies with potential applications in long-range charge transport. As a proof of concept, we show that a single charge in the cation radical of a triptycene derivative is evenly distributed on all three benzenoid rings and this triptycene cation radical forms a 2D electronically coupled assembly, as established by X-ray crystallography.
Magic blue (MB+• SbCl6− salt), i.e. tris-4-bromophenylamminium cation radical, is a routinely employed one-electron oxidant that slowly decomposes in solid state upon storage to form so called ‘blues brothers’, which often complicate the quantitative analyses of the oxidation processes. Herein, we disclose the identity of main ‘blues brother’ as the cation radical and dication of tetrakis-(4-bromophenyl)benzidine (TAB) by a combined DFT and experimental approach, including isolation of TAB+• SbCl6− and its X-ray crystallography characterization. The formation of TAB in aged magic blue samples occurs by a Scholl-type coupling of a pair of MB followed by a loss of molecular bromine. This recognition led us to rational design and synthesis of tris(2-bromo-4-tert-butylphenyl)amine, referred to as ‘blues cousin’, (BC: Eox1 = 0.78 V vs Fc/Fc+, λmax(BC+•) = 805 nm, εmax = 9930 cm−1 M−1), whose oxidative dimerization is significantly hampered by positioning the sterically demanding tert-butyl groups at the para-positions of aryl rings. A ready two-step synthesis of BC from triphenylamine and the high stability of its cation radical (BC+•) promises that BC will serve as a ready replacement for MB and oxidant of choice for mechanistic investigations of one-electron transfer processes in organic, inorganic, and organometallic transformations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.