The viscoelastic behaviour of PA12/SEBS-g-MA blends was studied. Time sweep, amplitude sweep, and frequency sweep tests were analysed by the use of parallel-plate rheometer. Time sweep test shows time-independent viscoelastic behaviour of the polymer and blends during the entire duration of test. The critical shear strain was higher for PA12 as compared to that of SEBS-g-MA and the blends in amplitude sweep test. However, the plateau modulus was higher for SEBS-g-MA as compared to PA12. The complex viscosity, dynamic storage, and loss moduli of PA12 increased with the addition of SEBS-g-MA as a consequence of phase interaction between them. The influence of phase morphology of blend composition on their rheological properties was also examined. The blend showed a transformation from liquid-like to solid-like behaviour. The decrease in viscosity for PA12 and blends was observed with increasing temperature. The van Gurp plots was successfully used to validate time-temperature superposition principle (TTS) for PA12, SEBS-g-MA and blend compositions. PA12 holds TTS with a horizontal shift factor that fits Arrhenius equation. Whereas TTS fails for SEBS-g-MA and the blends studied because of different temperature-sensitive response and microstructural changes of melt during shear application.
The present investigation deals with the mechanical and morphological properties of binary polyamide 12/maleic anhydride-grafted styrene-b-(ethylene-cobutylene)-b-styrene rubber (PA12/SEBS-g-MA) blends at varying dispersed phase (SEBS-g-MA) concentrations. Tensile behavior, impact strength and crystallinity of these blend systems were evaluated. Influence of microstructure, dispersed phase particle size, and ligament thickness on the impact toughness of the blend was studied. DSC data indicated an increase in crystallinity of PA12 in the blends. Tensile modulus and strength decreased while impact strength and elongation-atbreak increased with the elastomer concentration. The enhanced properties were supported by interphase adhesion between the grafted maleic groups of rubber with polar moiety of polyamide 12. Analysis of the tensile data employing simple theoretical models showed the variation of stress concentration effect with blend composition.
The thermal behaviour and crystallization kinetics of PA12/SEBS-g-MA blends were investigated under non-isothermal and isothermal conditions using thermogravimetric analysis and differential scanning calorimetry, respectively. The macrokinetic model given by Avrami was used to analyse both the nonisothermal and isothermal crystallization kinetics of the blends. The value of the Avrami exponent during non-isothermal crystallization predicted that pure PA12 and PA12/SEBS-g-MA blends show spherulitic growth with random nucleation of crystal structures as the n-values lie between 3 and 4. The slight nucleating effect of SEBS-g-MA was showed by nucleating activity calculated by the Dobreva and Gutzowa method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.