In this study, a freestanding thin film composed of lithium triflate (LiTf) salt (30-40 wt.%) and epoxidized-30% poly (methyl methacrylate)-grafted natural rubber (EMG30) (50, 54.6, 62.3 mol %) were prepared by a solvent cast technique. The EMG30 were found to increase the ionic conductivity of EMG30-LiTf by one order of magnitude compared to MG30-LiTf. The highest ionic conductivity achieved was 5.584 x10-3Scm-1at room temperature when 40 wt.% of LiTf salts were introduced into 62.3 mol % EMG30. The ionic conduction mechanisms in EMG30-LiTf electrolytes obey Arrhenius rule in which the ion transport in these materials is thermally assisted.
Thin films of epoxidized-30% poly (methyl methacrylate)-grafted natural rubber (EMG30) doped with lithium triflate (LiTf) salt were prepared by using the solution-casting technique. Transformation of carbon double bond (C=C) into epoxide group (C-O-C) in EMG30 polymer host was confirmed by 1HNMR analysis. The ionic conductivity measurement was carried out and the highest conductivity was found to be at 5.843×10-3 S cm room temperature for the sample with composition at 60wt% EMG30: 40wt% LiTf. Thermal gravimetric analysis studies showed that upon the addition of lithium salts into EMG30 was increased the thermal stability of the polymer electrolyte systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.