Although mosquitoes (Diptera: Culicidae) are important disease vectors, information on their biodiversity in Mauritania is scarce and very dispersed in the literature. Data from the scientific literature gathered in the country from 1948 to 2016 were collected and analyzed. Overall 51 culicid species comprising 17 Anopheles spp., 14 Aedes spp., 18 Culex spp. and two Mansonia spp. have been described in Mauritania among which Anopheles arabiensis, Aedes vexans, Culex poicilipes and Culex antennatus are of epidemiological significance. Anopheles arabiensis is widely distributed throughout the country and its geographic distribution has increased northwards in recent years, shifting its northern limit form 17°32′N in the 1960s to 18°47′N today. Its presence in the central region of Tagant highlights the great ecological plasticity of the species. Conversely, the distribution of Anopheles gambiae (s.s.) and Anopheles melas has shrunk compared to that of the 1960s. Anopheles rhodesiensis and An. d’thali are mainly confined in the mountainous areas (alt. 200–700 m), whereas Anopheles pharoensis is widely distributed in the Senegal River basin. Culex poicilipes and Cx. antenattus were naturally found infected with Rift valley fever virus in central and northern Mauritania following the Rift valley outbreaks of 1998 and 2012. Recently, Ae. aegypti emerged in Nouakchott and is probably responsible for dengue fever episodes of 2015. This paper provides a concise and up-to-date overview of the existing literature on mosquito species known to occur in Mauritania and highlights areas where future studies should fill a gap in knowledge about vector biodiversity. It aims to help ongoing and future research on mosquitoes particularly in the field of medical entomology to inform evidence-based decision-making for vector control and management strategies.
Aedes aegypti L. (Diptera: Culicidae) is a major vector of yellow fever, dengue, and chikungunya viruses throughout tropical and subtropical areas of the world. Although the southernmost part of Mauritania along the Senegal river has long been recognized at risk of yellow fever transmission, Aedes spp. mosquitoes had never been reported northwards in Mauritania. Here, we report the first observation of Aedes aegypti aegypti (L.) and Aedes (Ochlerotatus) caspius (Pallas, 1771) in the capital city, Nouakchott. We describe the development sites in which larvae of the two species were found, drawing attention to the risk for emergence of arbovirus transmission in the city.
BackgroundMosquitoes belonging to Anopheles gambiae species complex are the main malaria vector in Mauritania but data on their vector capacities, feeding habits and insecticide susceptibility are still scanty. The objectives of this study were to fill this gap.MethodsAdult Anopheles spp. mosquitoes were collected using pyrethrum spray catch method from two ecological zones of Mauritania: Nouakchott (Saharan zone) and Hodh Elgharbi region (Sahelian zone). Circumsporozoite proteins (CSP) for P. falciparum, P. vivax VK210 and P. vivax VK247 were detected by enzyme-linked immunosorbent assay (ELISA) from the female anopheline mosquitoes. To confirm CSP-ELISA results, polymerase chain reaction (PCR) was also performed. Blood meal identification was performed in all engorged females by partial sequencing of the mitochondrial cytochrome b gene. Molecular assessments of pyrethroid knockdown resistance (kdr) and insensitive acetylcholinesterase resistance (ace-1) were conducted.ResultsIn Nouakchott, the only species of Anopheles identified during the survey was Anopheles arabiensis (356 specimens). In Hodh Elgharbi, 1016 specimens of Anopheles were collected, including 578 (56.9 %) Anopheles rufipes, 410 (40.35 %) An. arabiensis, 20 (1.96 %) An. gambiae, 5 (0.5 %) An. pharoensis and 3 (0.3 %) An. funestus. Three of 186 female An. arabiensis collected in Nouakchott and tested by ELISA were found positive for Plasmodium vivax VK210, corresponding to a sporozoite rate of 1.6 %; however PCR confirmed infection by P. vivax sporozoite in only one of these. In Hodh Elgharbi, no mosquito was found positive for Plasmodium spp. infection. There was a statistically significant difference in the percentage of human blood-fed Anopheles spp. between Nouakchott (58.7 %, 47 of 80 blood-engorged An. arabiensis females) and Hodh Elgharbi (11.1 %, 2 of 18 blood-engorged mosquitoes). Analysis of the kdr polymorphisms showed 48.2 % (70/145) of East African kdr mutation (L1014S) in Nouakchott compared to 10 % (4/40) in Hodh Elgharbi region (P < 0.001). Nevertheless, West African kdr mutation (L1014F) was found only in An. gambiae populations (4/40, 10 %) from Hodh Elgharbi region. No ace-1 mutation was found in mosquito specimens from the two study zones.ConclusionsOverall, this study confirmed the autochthonous P. vivax malaria transmission in Nouakchott, involving An. arabiensis as the main vector. It also described for the first time the absence of ace-1 mutation, the co-occurrence of both West and East African kdr mutation in An. gambiae in Mauritania, and highlighted the regional variations in the prevalence and type of kdr mutations.
BackgroundMalaria is endemic in the southernmost Sahelian zone of Mauritania where the major known mosquito vector is Anopheles arabiensis. Understanding seasonal population dynamics, feeding preferences and insecticide resistance status of these vectors in the area is essential to improve vector control measures implemented at a local scale. Here, malaria vector populations’ bionomics is described in two sentinel sites located in the Sahelian zone of Mauritania.MethodsBetween September 2014 and December 2016, longitudinal entomological surveys were conducted in Kobeni (15°49'N, 09°24'W) and Rosso (16°30'N; 15°48'W), two localities in the southern Sahelian zone of Mauritania. Adult mosquitoes were collected using indoor pyrethrum spray catch (PSC). Morphological and PCR-based methods were used to identify the species, detect Plasmodium parasites and analyze blood meals in individual mosquitoes. WHO insecticide susceptibility tests were performed with malathion (5%), bendiocarb (0.1%), permethrin (0.75%) and deltamethrin (0.05%) using female An. gambiae (s.l.) reared from larval and pupal collections from natural breeding sites.ResultsA total of 2702 Anopheles mosquitoes were collected by PSC during the study period comprising 2291 Anopheles gambiae (s.l.), 376 Anopheles rufipes and 35 Anopheles pharoensis. In Rosso, all mosquitoes from the An. gambiae (s.l.) complex were molecularly identified as An. arabiensis (n = 455/455, 100%). Anopheles pharoensis represented 2.5% (n = 35/1420) of the specimens collected by PSC in Rosso. In Kobeni, An. arabiensis was dominant (n = 278/301, 92.3%) and occurred together with Anopheles coluzzii (n = 18/301, 6%) and An. gambiae (s.s.) (n = 3/301, 1%). Two An. coluzzii × An. arabiensis hybrids were also detected (0.7%) in Kobeni, and An. rufipes was the only other Anopheles species found resting indoors (n = 376/1277, 29.4%). There was an average of 5.6 and 3.6 indoor resting female An. gambiae (s.l.) per room in Kobeni and Rosso, respectively. Indoor resting female An. gambiae (s.l.) mosquitoes in both sites fed most frequently on bovine blood (35.5% in Rosso and 37% in Kobeni). The proportion of An. gambiae (s.l.) mosquitoes that took human blood was significantly higher in Kobeni (HBI = 37%) than in Rosso (HBI = 5.6%) and 32% of An. gambiae (s.l.) mosquitoes contained blood from more than one host species. None of the 1414 tested mosquitoes in both sites were found positive for Plasmodium spp. sporozoites. WHO insecticide resistance tests revealed resistance to permethrin in the An. arabiensis population from Rosso (mortality = 64%) as well as reduced mortality to deltamethrin (mortality = 97%).ConclusionThis study provides updated information on the composition and dynamics of the malaria vector system in southern Mauritania where malaria is endemic. Such data are a necessary prerequisite to devise and implement tailored malaria elimination strategies in areas of low residual transmission.
Background Plasmodium vivax malaria is one of the major infectious diseases of public health concern in Nouakchott, the capital city of Mauritania and the biggest urban setting in the Sahara. The assessment of the current trends in malaria epidemiology is primordial in understanding the dynamics of its transmission and developing an effective control strategy. Methods A 6 year (2015–2020) prospective study was carried out in Nouakchott. Febrile outpatients with a clinical suspicion of malaria presenting spontaneously at Teyarett Health Centre or the paediatric department of Mother and Children Hospital Centre were screened for malaria using a rapid diagnostic test, microscopic examination of Giemsa-stained blood films, and nested polymerase chain reaction. Data were analysed using Microsoft Excel and GraphPad Prism and InStat software. Results Of 1760 febrile patients included in this study, 274 (15.5%) were malaria-positive by rapid diagnostic test, 256 (14.5%) were malaria-positive by microscopy, and 291 (16.5%) were malaria-positive by PCR. Plasmodium vivax accounted for 216 of 291 (74.2%) PCR-positive patients; 47 (16.1%) and 28 (9.6%) had P. falciparum monoinfection or P. vivax–P. falciparum mixed infection, respectively. During the study period, the annual prevalence of malaria declined from 29.2% in 2015 to 13.2% in 2019 and 2.1% in 2020 (P < 0.05). Malaria transmission was essentially seasonal, with a peak occurring soon after the rainy season (October–November), and P. vivax infections, but not P. falciparum infections, occurred at low levels during the rest of the year. The most affected subset of patient population was adult male white and black Moors. The decline in malaria prevalence was correlated with decreasing annual rainfall (r = 0.85; P = 0.03) and was also associated with better management of the potable water supply system. A large majority of included patients did not possess or did not use bed nets. Conclusions Control interventions based on prevention, diagnosis, and treatment should be reinforced in Nouakchott, and P. vivax-specific control measures, including chloroquine and 8-aminoquinolines (primaquine, tafenoquine) for treatment, should be considered to further improve the efficacy of interventions and aim for malaria elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.