Transparent electrodes based on conventional indium-tin oxide (ITO) can hardly meet the requirements of future generations of stretchable electronic devices, including artificial skins, stretchable displays, sensors, and actuators, because they cannot retain high conductivity under substantial stretching and bending deformation. Here we suggest a new approach for fabricating highly stretchable and transparent electrodes with good stability in environments where they would be stretched repeatedly. We designed polyurethane-urea (PUU), a urethane-based polymer, to enhance the adhesion between Ag nanowires (AgNWs) and poly(dimethylsiloxane) (PDMS). The adhesion could be further improved when irradiated by intense pulsed light (IPL). After delicate optimization of the layered AgNW/PUU/PDMS structure, we fabricated a stretchable transparent electrode that could withstand 100 cycles of 50% stretching-releasing, with exceptionally high stability and reversibility. This newly developed electrode is therefore expected to be directly applicable to a wide range of high-performance, low-cost, stretchable electronic devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.