Objective To evaluate whether artificial intelligence (AI) for detecting breast cancer on mammography can improve the performance and time efficiency of radiologists reading mammograms. Materials and Methods A commercial deep learning-based software for mammography was validated using external data collected from 200 patients, 100 each with and without breast cancer (40 with benign lesions and 60 without lesions) from one hospital. Ten readers, including five breast specialist radiologists (BSRs) and five general radiologists (GRs), assessed all mammography images using a seven-point scale to rate the likelihood of malignancy in two sessions, with and without the aid of the AI-based software, and the reading time was automatically recorded using a web-based reporting system. Two reading sessions were conducted with a two-month washout period in between. Differences in the area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, and reading time between reading with and without AI were analyzed, accounting for data clustering by readers when indicated. Results The AUROC of the AI alone, BSR (average across five readers), and GR (average across five readers) groups was 0.915 (95% confidence interval, 0.876–0.954), 0.813 (0.756–0.870), and 0.684 (0.616–0.752), respectively. With AI assistance, the AUROC significantly increased to 0.884 (0.840–0.928) and 0.833 (0.779–0.887) in the BSR and GR groups, respectively ( p = 0.007 and p < 0.001, respectively). Sensitivity was improved by AI assistance in both groups (74.6% vs. 88.6% in BSR, p < 0.001; 52.1% vs. 79.4% in GR, p < 0.001), but the specificity did not differ significantly (66.6% vs. 66.4% in BSR, p = 0.238; 70.8% vs. 70.0% in GR, p = 0.689). The average reading time pooled across readers was significantly decreased by AI assistance for BSRs (82.73 vs. 73.04 seconds, p < 0.001) but increased in GRs (35.44 vs. 42.52 seconds, p < 0.001). Conclusion AI-based software improved the performance of radiologists regardless of their experience and affected the reading time.
Purpose Artificial intelligence (AI)-based computer-aided detection/diagnosis (CADe/x) has helped improve radiologists’ performance and provides results equivalent or superior to those of radiologists’ alone. This prospective multicenter cohort study aims to generate real-world evidence on the overall benefits and disadvantages of using AI-based CADe/x for breast cancer detection in a population-based breast cancer screening program comprising Korean women aged ≥ 40 years. The purpose of this report is to compare the diagnostic accuracy of radiologists with and without the use of AI-based CADe/x in mammography readings for breast cancer screening of Korean women with average breast cancer risk. Methods Approximately 32,714 participants will be enrolled between February 2021 and December 2022 at 5 study sites in Korea. A radiologist specializing in breast imaging will interpret the mammography readings with or without the use of AI-based CADe/x. If recall is required, further diagnostic workup will be conducted to confirm the cancer detected on screening. The findings will be recorded for all participants regardless of their screening status to identify study participants with breast cancer diagnosis within both 1 year and 2 years of screening. The national cancer registry database will be reviewed in 2026 and 2027, and the results of this study are expected to be published in 2027. In addition, the diagnostic accuracy of general radiologists and radiologists specializing in breast imaging from another hospital with or without the use of AI-based CADe/x will be compared considering mammography readings for breast cancer screening. Discussion The Artificial Intelligence for Breast Cancer Screening in Mammography (AI-STREAM) study is a prospective multicenter study that aims to compare the diagnostic accuracy of radiologists with and without the use of AI-based CADe/x in mammography readings for breast cancer screening of women with average breast cancer risk. AI-STREAM is currently in the patient enrollment phase. Trial Registration ClinicalTrials.gov Identifier: NCT05024591
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.