This paper presents a dynamic finite element analysis model for a wind turbine gearbox in which a number of internal gears mesh with each other in a complex pattern. Differing from the conventional dynamic models in which the detailed gear teeth are fully modeled or gears and shafts are replaced with lumped masses, the tooth contact between a pair of gears is modeled using a spring element. The equivalent spring constant is determined by computing the stiffness of a gear tooth using a finite element analysis. The numerical accuracy of the proposed dynamic model is verified through a benchmark experiment of a gearbox with simple gear transmission system. In addition, the natural frequencies and dynamic responses of a 5 MW wind turbine gearbox that are obtained by the proposed modeling technique are given to support its validity and effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.