Various morphologies of zinc oxide (ZnO) nanostructures on single layer graphene were synthesized by electrodeposition method. The current density was utilized to control the morphology of the ZnO. The Scanning Electron Microscope (SEM) was used to examine the surface morphology of the samples. SEM analysis shows morphology changes to nanorod, flower, and flakes with increase in the current density from 0.1, 0.2, and 0.3 mA/cm(-1) respectively. The XRD, XPS, and Raman spectroscopy were adopted to characterize the ZnO nanostructure and to understand the formation of various morphologies. The Raman result clearly shows extra modes due to for flakes structure caused by c-axis orientation along the substrate direction. Further, XPS data also supports formation of ZnO without any other intermediate compound such as Zn(OH)2. The formation of various morphologies was correlated to the formation different ratio of Zn2+ and OH- ions and the change in growth direction due to various current densities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.