We investigated whether cold acclimation leads to increased activity of the antioxidant defense enzymes and muscle injury. Comparisons were between short track skaters (nϭ6) and inline skaters (nϭ6) during rest and at submaximal cycling (65% VO 2 max) in cold (ambient temperature: 5Ϯ1°C, relative humidity: 41Ϯ8%) and warm conditions (ambient temperature: 21Ϯ1°C, relative humidity: 35Ϯ5%), during 60 min, respectively, and during the recovery phase. Erythrocyte superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSHpx), reduced glutathione (GSH), thiobarbituric substance acid (TBARS), serum creatine kinase (CK), lactate dehydrogenase (LDH), plasma myoglobin (Mb) and cortisol were determined. Activities of CAT and GSHpx and the level of GSH and TBARS in erythrocyte and the level of LDH in serum were elevated in cold acclimated subjects. We suggested that the compensatory increase in antioxidative defense enzymes resulting from long-term cold exposure may reflect the elevated reactive oxygen species (ROS) production and muscle injury at this environment acclimation.
To test the effect of a cold condition on metabolic substrate and possible development of muscle injuries, short track skaters (nϭ9) and inline skaters (nϭ10) took rest and submaximal cycled (65% VO 2 max) in cold (ambient temperature: 5Ϯ1°C, relative humidity: 41Ϯ8%) and warm conditions (ambient temperature: 21Ϯ1°C, relative humidity: 35Ϯ5%), for 60 min, each. Blood glucose (BG), triglyceride (TG), free fatty acid (FFA), and total cholesterol (TC) were determined to investigate the effect on energy metabolism. To estimate possible muscle injury in the cold condition, creatine kinase (CK), lactate dehydrogenase (LDH), and myoglobin (Mb) were also measured. TG and FFA levels were increased during exercise in the cold condition, but were unaffected by the difference of skaters. Of the myocellular enzymes, CK was significantly higher during the transition from submaximal exercise to recovery phase in a short track skater compared with inline skater group, indicating a higher physical strain. Additionally, the level of Mb in the inline skater group significantly elevated during recovery phase in the cold compared with in the warm condition. It is concluded that exercise caused stress that was dependent on the ambient temperature. Therefore, exercise in the cold condition altered the circulating level of energy substrate and increased muscle injuries.
[Purpose]This study is aimed at providing clear guidance on treatment and prevention of osteoporosis by comparing and analyzing some well-known methods out of drug and exercise therapies.[Methods]For this purpose, eight-week experiments (drug therapy and exercise therapy) were carried out by using rats whose menopause was induced by the removal of an ovary. In the treatment of the drug therapy, the effects of soy protein, one of the well-known alendronate and estrogen replacement therapy, were compared and analyzed. In the treatment of the exercise therapy, endurance exercise using a treadmill and resistance exercise through climbing a special cage were compared and analyzed. Based on these results, this study will be able to suggest the most appropriate way to deal with osteoporosis which requires long-term treatment. Sixty eight-week-old Sprague-Dawley female rats had a week to adapt to the new environment. After that, they were randomly divided into four groups (Sham-Sedentary; SS, ovariectomized-control; OC, ovariectomized-soy protein; OS: ovariectomized-alendronate; OA, ovariectomized-endurance exercise; OE, ovariectomized-resistance exercise; OR) before having an operation for the removal of an ovary. After surgery, the rats convalesced for a week. Alendronate (0.4mg / kg of body weight) and isoflavones (200g / 1 kg of feed) were given to two groups respectively for eight weeks. The rats in the other two groups performed resistance exercise (climbing) and endurance exercise (20 m/min; 60min/day) five days a week for eight weeks.[Results]Ovariectomy increased the body weight and body fat like menopause did. Soy protein and alendronate intake for eight weeks had no effect on body weight but reduced the body fat increased by ovariectomy to the level of the SS group. The menopause induced by ovariectomy did not affect total bone density and bone mass as well as bone density in specific areas of the body. Soy protein and alendronate intake for eight weeks did not significantly affect them either. However, the eight-week treatment with soy protein and alendronate significantly reduced the level of osteocalcin in blood. Resistance exercise more noticeably increased body weight and bone mass than running on the low-intensity treadmill but serum osteocalcin levels were notably increased in both cases.[Conclusion]These results show that soy protein which is natural produce and low-intensity, regular endurance exercise also have an effect on the treatment and prevention of osteoporosis caused by menopause.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.