We report spatial domain measurements of the damping of surface-plasmon excitations in metal films with periodic nanohole arrays. The measurements reveal a short coherent propagation length of a few microm inside nanohole arrays, consistent with delays of about 10 fs in ultrafast transmission experiments. This implies that the transmission spectra of the entire plasmonic band-gap structure are homogeneously broadened by radiative damping of surface-plasmon excitations. We show that a Rayleigh-like scattering of surface plasmons by the periodic hole array is the microscopic origin of this damping, allowing the reradiation rate to be controlled.
We have generated and detected coherent lattice vibrations in single-walled carbon nanotubes corresponding to the radial breathing mode (RBM) using ultrashort laser pulses. Because the band gap is a function of diameter, these RBM-induced diameter oscillations cause ultrafast band gap oscillations, thereby modulating the interband excitonic resonances at the phonon frequencies (3-9 THz). Excitation spectra show a large number of pronounced peaks, allowing the determination of the chiralities present in particular samples and relative population differences of particular chiralities between samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.