Following sanitation interventions in food processing facilities, sublethally injured bacterial cells can remain on food contact surfaces. We investigated whether injured Salmonella Typhimurium cells can attach onto abiotic surfaces, which is the initial stage for further biofilm development. We utilized heat, UV, hydrogen peroxide, and lactic acid treatments, which are widely utilized by the food industry. Our results showed that heat, UV, and hydrogen peroxide did not effectively change populations of attached Salmonella Typhimurium. Cells treated with hydrogen peroxide had a slightly higher tendency to adhere to abiotic surfaces, although there was no significant difference between the populations of control and hydrogen peroxide-treated cells. However, lactic acid effectively reduced the number of Salmonella Typhimurium cells attached to stainless steel. We also compared physicochemical changes of Salmonella Typhimurium after application of lactic acid and used hydrogen peroxide as a positive control because only lactic acid showed a decreased tendency for attachment and hydrogen peroxide induced slightly higher numbers of attached bacteria cells. Extracellular polymeric substance produced by Salmonella Typhimurium was not detected in any treatment. Significant differences in hydrophobicity were not observed. Surface charges of cell membranes did not show relevant correlation with numbers of attached cells, whereas autoaggregation showed a positive correlation with attachment to stainless steel. Our results highlight that when lactic acid is applied in a food processing facility, it can effectively interfere with adhesion of injured Salmonella Typhimurium cells onto food contact surfaces.
The objectives of this study were to determine the effect of the milling degree (MD) of Oryza sativa L. (Korean rice) on the heating rate, pathogen inactivation (Salmonella Typhimurium and Staphylococcus aureus), and color change resulting from radio-frequency (RF) heating. Rice samples inoculated with pathogens were placed in a polypropylene jar and subjected to RF heating for 0-75 s. The heating rate of rice with a 2% MD was the highest during RF heating, followed by those with a 0, 8, and 10% MD, and the reduction of pathogens showed the same trend. The reduction of the levels of pathogens in rice with a MD 0 and 2% was significantly higher than that observed for rice with a MD of 8 and 10% under the same treatment conditions. For example, log reductions of S. Typhimurium in rice by 55 s RF heating were 3.64, 5.19, 2.18, and 1.80 for milling degree of 0, 2, 8, and 10%, respectively. At the same treatment conditions, log reduction of S. aureus were 2.77, 5.08, 1.15, and 0.90 for milling degree of 0, 2, 8, and 10%, respectively. The color of rice measured according to L*, a*, and b* was not significantly altered after RF heating, regardless of the MD. Therefore, the MD of rice should be considered before RF heating is applied to inactivate foodborne pathogens.
Aims: The objective of this study was to evaluate the antimicrobial effects of radio frequency (RF) heating and the combination treatment of RF heating with ultraviolet (UV) radiation against foodborne pathogens in roasted grain powder (RGP). Methods and Results: Foodborne pathogens inoculated on RGP were subjected to RF heating or RF-UV combination treatments. After 120 s of RF heating, 4Á68, 3Á89 and 4Á54 log reductions were observed for Escherichia coli, Salmonella Typhimurium and Bacillus cereus vegetative cells respectively. The combined RF-UV treatment showed synergistic effects of over 1 log unit compared to the sum of individual treatment for E. coli and S. Typhimurium, but not for B. cereus vegetative cells because of their high UV resistance. Germinated B. cereus cells were not significantly inactivated by RF heating (<1 log CFU per gram), and increased heat resistance compared to the vegetative cells was verified with mild heat treatment. The colour of RGP was not significantly affected by the RF or RF-UV treatments. Conclusions: Applying RF heating to grain-based food products has advantages for the inactivation of E. coli and S. Typhimurium in RGP. Significance and Impact of the Study: The results of the present study could be used as a basis for determining the treatment conditions for inactivating E. coli and other foodborne pathogens such as S. Typhimurium and B. cereus in RGP.
Purpose Biofilms are bacterial communities embedded in exopolysaccharide, enhancing the difficulty of detaching bacterial cells from surfaces. Due to structural properties, it is difficult to detach biofilms. Many removal methods have been developed, but there are still some limitations such as sample size and reproducibility. “Spindle” was developed, producing a higher quality suspension which can be used for further study. The paper aims to discuss these issues. Design/methodology/approach The authors compared the enumeration of biofilm-forming cells detached from the spindle and stomacher in various surfaces. First, the authors chose stainless steel and polyvinyl chloride to attach biofilms and to be subjected to stomacher and spindle for up to 2 min. Also, the authors evaluated the efficiency of detachment from vegetable surfaces. Findings In a comparative experiment of abiotic surfaces, the spindle showed identical effectiveness for detaching biofilm-forming cells compared to the stomacher, recovering the population by 8-log for Escherichia coli O157:H7, Salmonella Typhimurium and Listeria monocytogenes. The spindle also showed no significant difference from the stomacher in the number of recovered cells which is 4-log from vegetable surfaces. However, turbidity after spinach was subjected to spindle was 4.37 NTU, while it was 99 NTU for stomacher, which was in accord with visual result about clearance. Originality/value This study demonstrated that the spindle is a useful to separate biofilms from surfaces without destructing structure, and thus it can be used for analysis in food laboratories as well as utilized for vegetable washing step in the food industry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.