Orientation information of space debris is required to improve the orbital prediction accuracy for mitigation or elimination of a significant threat to not only human space activities but also operational satellites. Obtaining orientation information is currently achievable by applying photometry, adaptive optics (AO) and satellite laser ranging (SLR) technologies. In this study, a new method is proposed based on an echo laser pulse waveform (ELPW) for the orientation determination of space debris; its feasibility was also investigated by numerical simulations. Unlike the photometry and AO technologies available just under the sun-illumination condition and the SLR technology applicable only for cooperative targets, the ELPW is achievable by using a high power laser regardless of the above measurement constraints. A mathematical model is derived to generate the ELPW, and the beam broadening and spreading due to the atmospheric turbulence is taken into account. The Gaussian decomposition based on a genetic algorithm was employed to the ELPWs in order to analyze the orientation features. It is demonstrated from the numerical simulations that the ELPWs have distinctive shapes characterizing the orientation of space debris and therefore our approach was capable of providing orientation information.
The Accurate Ranging System for Geodetic Observation -Mobile (ARGO-M) was successfully developed as the first Korean mobile Satellite Laser Ranging (SLR) system in 2012, and has joined in the International Laser Ranging Service (ILRS) tracking network, DAEdeoK (DAEK) station. The DAEK SLR station was approved as a validated station in April 2014, through the ILRS station "data validation" process. The ARGO-M system is designed to enable 2 kHz laser ranging with millimeter-level precision for geodetic, remote sensing, navigation, and experimental satellites equipped with Laser Retroreflector Arrays (LRAs). In this paper, we present the design and development of a next generation high-repetition-rate SLR system for ARGO-M. The laser ranging rate up to 10 kHz is becoming an important issue in the SLR community to improve ranging precision. To implement high-repetition-rate SLR system, the High-repetition-rate SLR operation system (HSLR-10) was designed and developed using ARGO-M Range Gate Generator (A-RGG), so as to enable laser ranging from 50 Hz to 10 kHz. HSLR-10 includes both hardware controlling software and data post-processing software. This paper shows the design and development of key technologies of high-repetition-rate SLR system. The developed system was tested successfully at DAEK station and then moved to Sejong station, a new Korean SLR station, on July 1, 2015. HSLR-10 will begin normal operations at Sejong station in the near future.
The global electro-optical (EO) and laser tracking sensor network was considered to investigate improvements to orbit prediction (OP) accuracy of space debris by combining angle and laser ranging data. However, it is worth noting that weather, schedule and visibility constraints can frequently limit the operations of such sensors, which may not result in sufficient tracking data for accurate OP. In this study, several 1-day OP results for low Earth orbit (LEO) space debris targets were demonstrated under a limited observation environment to verify the OP accuracy through the combination of angle and laser ranging data from two sites. For orbit determination (OD) processes, it was considered to analyze the OP accuracy by one site providing both 2–day arc angle data and 1-day arc laser ranging data, while the other was limited to 1-day arc angle data. In addition, the initial ballistic coefficient ( B C ) application method was proposed and implemented for the improvement of OD/OP accuracy, which introduces the modified correction factor depending on the drag coefficient. In the cases of combining the angle and laser ranging data, the OP results show the 3D position difference values are below 100 m root mean square (RMS) with small position uncertainty. This value satisfies the target OP accuracy for conjunction assessments and blind laser ranging (about 50–100 m at 1000 km altitude). The initial B C application method also shows better OP accuracy than the method without the correction factor.
Optical satellite communication has received considerable attention as a promising alternative to radio frequency communication because of its potential advantages including higher data rates and license free spectrum. Many studies have conducted performance analyses of optical communication channels, but few have investigated beacon tracking channels under atmospheric turbulence. The centroid accuracy of beacon tracking channels is limited by not only noise sources, but also a finite delay time, which also fluctuates due to atmospheric turbulence. Consequently, the centroid error is an important figure of merit when evaluating the performance of a beacon tracking system. In this study, the closed-form expressions were derived for average centroid error and fade probability, based on received photoelectron counts depending on exposure time, taking into account the log-normal tracking channels. We analyzed the angular positioning performance of beacon tracking detectors onboard small satellites in the presence of atmospheric turbulence, in terms of centroid error and fade probability. We found that an optimal exposure time exists, which minimizes the centroid error, and that fade probability is inversely proportional to the exposure time. These are significant properties to consider in the design of beacon tracking systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.