The effects of low net-doped region on the electrical performance of tunnel field-effect transistors (TFETs) are investigated using TCAD simulation. Compared with previous studies, it is observed that the low net-doped region between the source and pocket can enhance TFET electrical characteristics such as on-current (Ion) and subthreshold swing (SS) with fine on-off current ratio (Ion/Ioff). By optimizing the length of the low net-doped region, Ion increased 14.6 times and the SS is reduced by 34.6 % compared with the TFET where the low net-doped region was not considered. Furthermore, guidelines for designing counterdoped pocket are proposed considering the low net-doped region. The local minimum in the conduction band can be used to further improve the on-current and SS performance by adjusting the pocket width and doping concentration. To avoid pocket-induced SS degradation, the pocket doping concentration must also be taken into account when determining the optimal value of the pocket width and vice versa.INDEX TERMS Tunnel field-effect transistor (TFET), counter-doped pocket, low net-doped region, pocket width, tunneling width
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.