Friction stir welding (FSW) was performed about AA6061-T6 and Ti-6Al-4V alloy sheets. A unique shaped tool with circular truncated cone of probe was used. Mechanical properties and interfacial microstructure were evaluated using tensile test, hardness test, optical microscopy (OM), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM), respectively. Root area of probe in stir zone (SZ) reveals a mixture of finely recrystallized grains of Al and Ti particles pushed away from the base metal by strong stirring of probe. The joint interface of tip area of probe was relatively flat because stirring between aluminum and titanium alloy was not occurred due to the gap of the probe and titanium alloy front. It is considered that the insufficient stirring due to inclined side of the probe was contributed to the decrease of weld strength. After tensile test, fracture surface was analyzed by SEM. In the probe root area, dimples of Al were observed. In the probe tip area, the initial surface of titanium alloy plate was observed. However, in the middle area, similar amount of Ti and Al was detected. As result, it was confirmed that the fracture sequence was very complex and the fracture position was different according to the probe position.
Using the spark plasma sintering process (SPS process), the WC-6wt.%Co hard materials were densified using an ultra fine WC-Co powder. The WC-Co was almost completely dense with a relative density of up to 100% after the simultaneous application of a pressure of 60 MPa and the DC pulse current for 3 min without any significant change in the grain size. The average grain size of WC that was produced through this experiment was about 0.2~0.8 µm. The hardness and fracture toughness were about 1816 kg/mm 2 and 15.1 MPa·m 1/2 , respectively, for 60 MPa at 1200℃.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.