This work presents a numerical optimization procedure for a low-speed axial flow fan blade with polynomial response surface approximation model. Reynolds-averaged Navier-Stokes equations with SST turbulence model are discretized by finite volume approximations and solved on hexahedral grids for flow analyses. The blade profile as well as stacking line is modified to enhance blade total efficiency, i.e., the objective function. The design variables of blade lean, maximum thickness and location of maximum thickness are selected, and a design of experiments technique produces design points where flow analyses are performed to obtain values of the objective function. A gradient-based search algorithm is used to find the optimal design in the design space from the constructed response surface model for the objective function. As a main result, the efficiency is increased effectively by the present optimization procedure. And, it is also shown that the modification of blade lean is more effective to improve the efficiency rather than modifying blade profile.
An artificial rearing method was designed for the generalist predator, Chrysopa pallens (Rambur). The rearing media were formulated based on, Orius strigicollis diets for feeding larvae, and two diets for adults were prepared with insect source and non‐insect as their main components. Development of the predators was successfully obtained with the diets for both larval and adult stages. The impact of these diets was recorded for growth during the larval stage and oviposition rates by the females. Total development period and mortality rate of, C. pallens were about 26.9 days and 11%, respectively. The females showed better reproduction with average of 2019 eggs over their life span of 89 days when the artificial diet with non‐insect source was provided. On overall basis the life expectancy and fecundity was better when compared with previous findings.
BackgroundBarrett's esophagus (BE) is one of the most common premalignant lesions and can progress to esophageal adenocarcinoma (EA). The numerous molecular events may play a role in the neoplastic transformation of Barrett’s mucosa such as the change of DNA ploidy, p53 mutation and alteration of adhesion molecules. However, the molecular mechanism of the progression of BE to EA remains unclear and most studies of mitochondrial DNA (mtDNA) mutations in BE have performed on BE with the presence of dysplasia.Methods/FindingsThus, the current study is to investigate new molecular events (Barrett’s esophageal tissue-specific-mtDNA alterations/instabilities) in mitochondrial genome and causative factors for their alterations using the corresponding adjacent normal mucosal tissue (NT) and tissue (BT) from 34 patients having Barrett’s metaplasia without the presence of dysplasia. Eighteen patients (53%) exhibited mtDNA mutations which were not found in adjacent NT. mtDNA copy number was about 3 times higher in BT than in adjacent NT. The activity of the mitochondrial respiratory chain enzyme complexes in tissues from Barrett’s metaplasia without the presence of dysplasia was impaired. Reactive oxygen species (ROS) level in BT was significantly higher than those in corresponding samples.Conclusion/SignificanceHigh ROS level in BT may contribute to the development of mtDNA mutations, which may play a crucial role in disease progression and tumorigenesis in BE.
Five genes, promoter methylation, in plasma were statistically significant risk factors in CRC patients. In this study, E-cad and APC genes may be particularly useful epigenetic biomarkers in plasma for the detection of CRC. Additionally, APC may able to identify early potential CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.