A compact and robust laser system is essential for mobile atom interferometers. Phase modulation can provide the two necessary phase-coherent frequencies without sophisticated phase-locking between two different lasers. However, the additional laser frequencies generated can perturb the atom interferometer. In this article, we report on a novel method to produce a single high-power laser beam composed of two phase-coherent sidebands without the perturbing carrier mode. Light from a diode laser is phase-modulated by using a fiber-coupled electro-optic modulator driven at 3.4 GHz and passes through a Fabry-Perot cavity with a 6.8 GHz free spectral range. The cavity filters the carrier mode to leave the two first-order sidebands for the two-photon Raman transition between the two hyperfine ground states of 87 Rb. The laser beam is then fed to a single tapered amplifier, and the two sidebands are both amplified without mode competition. The phase noise is lower than that of a state-of-the-art optically phase-locked external-cavity diode laser (-135 dBrad 2 /Hz at 10 kHz) at frequencies above 10 Hz. This technique can be used in all-fiber-based laser systems for future mobile atom interferometers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.