Summary
Glucagon-like peptide 1 (GLP-1) is necessary for normal gluco-regulation, and it has been widely presumed that this function reflects the actions of GLP-1 released from enteroendocrine L-cells. To test the relative importance of intestinal vs. pancreatic sources of GLP-1 for physiological regulation of glucose, we administered a GLP-1R antagonist, exendin 9–39 (Ex9), to mice with tissue-specific reactivation of the preproglucagon gene (Gcg). Ex9 impaired glucose tolerance in wild-type mice but had no impact on Gcg null or GLP-1R KO mice suggesting that Ex9 is a true and specific GLP-1R antagonist. Unexpectedly, Ex-9 had no effect on blood glucose in mice with restoration of intestinal Gcg. In contrast, pancreatic reactivation of Gcg fully restored the effect of Ex9 to impair both oral and IP glucose tolerance. These findings suggest an alternative model whereby islet GLP-1 also plays an important role in regulating glucose homeostasis.
Aims/hypothesis
This study was designed to ascertain whether human enteroendocrine cells express bitter taste receptors, and whether activation of these receptors with bitter-tasting ligands induces secretion of glucagon-like peptide-1 (GLP-1) and peptide YY (PYY).
Methods
We used human enteroendocrine NCI-H716 cells, isolated duodenal segments from mice, and whole mice as our experimental systems for investigating stimuli and mechanisms underlying GLP-1- and PYY-stimulated release. We measured hormone levels by ELISA and determined bitter taste receptor expression by real-time quantitative PCR. We adopted a pharmacological approach using inhibitors and enhancers of downstream signalling pathways known to be involved in bitter taste transduction in taste bud cells to investigate these pathways in NCI-H716 cells.
Results
Using a pharmacological approach, we identified signalling pathways triggered by the denatonium benzoate (DB)-activated bitter receptors. This involved activation of α-gustducin (Gαgust)—the specific G-protein subunit that is also present in taste bud cells—reduction of intracellular cAMP levels and enhancement of phospholipase C (PLC) activity, which ultimately led to increased intracellular calcium concentrations and hormone release. Gavage of DB, followed by gavage of glucose, to db/db mice stimulated GLP-1 and subsequent insulin secretion, leading to lower blood glucose levels.
Conclusions/interpretation
Our study demonstrates that activation of gut-expressed bitter taste receptors stimulates GLP-1 secretion in a PLC-dependent manner. In diabetic mice, DB (a ligand of bitter taste receptor cells), when given via gavage, lowers blood glucose levels in diabetic mice after oral glucose administration, through increased secretion of GLP-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.