Olfactomedin 4 (OLFM4) is highly expressed in gastrointestinal cancers and has an anti-apoptotic function. The roles of OLFM4 in tumor growth and metastasis and how it functions in these processes remain elusive. We investigated the function of OLFM4 in tumor growth and metastasis using B16F10 mouse melanoma cells as an experimental system. Our results showed that OLFM4 had no positive effect on cell viability or cell cycle progression in B16F10 cells. However, it significantly suppressed the tumorigenicity of B16F10 cells, i.e., intradermal primary tumor growth and lung metastasis. OLFM4 also suppressed the migration and invasion of B16F10 cells in vitro. For further insight into the mechanisms underlying OLFM4-mediated suppression of tumor progression, we examined the effect of OLFM4 on the expression of integrin and matrix metalloproteinase (MMP), both of which are involved in tumor progression. Overexpression of OLFM4 clearly reduced the expression levels of integrin α1, integrin α4, integrin α5, integrin α6, and MMP9. Moreover, forced expression of MMP9 attenuated the inhibitory activity of OLFM4 on migration and invasiveness. Our findings provide the experimental evidence that OLFM4 may function as a tumor suppressor and an anti-metastatic gene during tumor progression.
We have previously reported that Fas-resistant A20 cells (FasR) have phospholipase D (PLD) activity upregulated by endogenous PLD2 overexpression. In the present study, we investigated how overexpressed PLD2 in FasR could generate survival signals by regulating the protein levels of anti-apoptotic Bcl-2 and Bcl-xL. To confirm the effect of PLD2 on Bcl-2 protein levels, we transfected PLD2 into wild-type murine B lymphoma A20 cells. The transfected cells showed markedly the increases in Bcl-2 and Bcl-xL protein levels, and became resistant to Fas-induced apoptosis, similar to FasR. Treatment of wild-type A20 cells with phosphatidic acid (PA), the metabolic end product of PLD2 derived from phosphatidylcholin, markedly increased levels of anti-apoptotic Bcl-2 and Bcl-xL proteins. Moreover, PA-induced expressions of Bcl-2 and Bcl-xL were enhanced by propranolol, an inhibitor of PA phospholydrolase (PAP), whereas completely blocked by mepacrine, an inhibitor of phospholipase A(2) (PLA(2)), suggesting that PLA(2) metabolite of PA is responsible for the increases in Bcl-2 and Bcl-xL protein levels. We further confirmed the involvement of arachidonic acid (AA) in PA-induced survival signals by showing that 1,2-dipalmitoyl-sn-glycero-3-phosphate (DPPA), PA without AA, was unable to increase Bcl-2 and Bcl-xL proteins. Moreover, PA notably increased cyclooxygenase (COX)-2 protein expression, and PA-induced expression of both Bcl-2 and Bcl-xL was inhibited by NS-398, a specific inhibitor of COX-2. Taken together, these findings demonstrate that PA generated by PLD2 plays an important role in cell survival during Fas-mediated apoptosis through the increased Bcl-2 and Bcl-xL protein levels which resulted from PLA(2) and AA-COX2 pathway.
Phospholipase D is a ubiquitous enzyme that plays an important role in various lipid mediated cellular signaling pathways and produces rare phospholipids, phosphatidylethanol or phosphatidylbutanol, instead of phosphatidic acid with unique catalytic activity transphosphatidylation in the presence of primary alcohols. The reaction products, phosphatidylethanol or phosphatidylbutanol are used as markers of in vitro phospholipase D activity in many studies. For the sensitive detection of the phospholipase D products, we developed an advanced lipid extraction method that facilitates recovery of the compounds. With the new method, the activity change of phospholipase D by agonists could be detected more easily and the recovery rate was also increased. The increase of detected enzyme activity change was about double fold compared to the conventional lipid extraction method. This method provides selective force for the phospholipase D products in the extraction procedure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.