Inlay yarn and laid-in structures are important technical knitting elements that have been increasingly applied in the structural design of functional textiles in industrial, medical, and wearable electronics fields. However, there is no currently established geometric model to numerically analyze their spatial morphologies and structural properties. This study presents a new geometric model and numerical analysis approach to characterize spatial configurations of inlay yarn and ground yarn in a three-dimensional scenario for laid-in weft-knitted fabrics. Loop lengths of the inlay and ground yarn materials were calculated and analyzed under different contact and deformation conditions to estimate material consumption in this complex interlooping layout. Series of laid-in weft-knitted fabrics made of different combinations of ground and inlay yarns were fabricated with the 1 × 1 laid-in loop pattern and tested for the model validation. The comparisons between the experimental and calculated results indicated that the newly developed geometric model favorably agreed with the experimental measurements regarding the ground loop lengths and inlay loop lengths applied in the laid-in weft-knitted structures. The results indicated the applicability of the developed geometric model of laid-in weft-knitted fabrics with similar structural patterns in practical use. The output of this study provides a theoretical and practical reference for structural and physical properties analysis, material consumption prediction, even cost estimation of laid-in weft-knitted fabrics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.