A novel manifestation of piezoelectric effects in GaAs has been observed. The change of barrier height, φB, of Schottky diodes induced by uniaxial stresses, S, along 〈100〉, 〈011〉, 〈01̄1〉, and 〈111〉 has been measured. Shifts in φB due to the appearance of piezoelectric polarization charges at the semiconductor-metal interface for directions other than 〈100〉 are observed.
Silicon nitride (SiNx) thin films have been deposited by radio frequency (rf) magnetron sputtering of a silicon target in reactive nitrogen-argon atmospheres without intentional substrate heating. The influence of negative substrate bias Vs on the microstructural, compositional, chemical, mechanical, and optical properties of the SiNx films was systematically investigated. An extensive analysis of the films was carried out using ellipsometry, transmission electron microscopy (TEM), atomic force microscopy (AFM), Rutherford backscattering spectrometry, secondary ion mass spectrometry (SIMS), Fourier transform infrared (FTIR) spectroscopy, ultraviolet-visible spectroscopy, stress and chemical etch rate measurements. TEM and AFM studies revealed that films produced at low bias voltages had a porous columnar structure containing large void, typical of zone 1, but that films produced at higher bias voltages had relatively smooth surfaces with a highly condensed structure, typical of zone T. Both FTIR and SIMS analyses showed that an extremely small amount of hydrogen was contained in the SiNx films deposited at Vs over −75 V, resulting from the film densification by energetic bombardment. It was also found that the amount of argon incorporated in the film increased with increasing bias voltage, whereas the oxygen content decreased. As the substrate bias voltage was increased, the mechanical internal stress in the SiNx films became increasingly compressive and saturated at a value of about 1.8×1010 dyne/cm2 at higher bias voltages. This was found to be well correlated with the increased argon content and the film densification. The lowest etch rate in buffered hydrofluoric acid, approximately 72 Å/min, was observed with the application of a substrate bias of −50 V. A further reduction in etch rate could be achieved by annealing at 900 °C for 1 h in a N2 ambient. The optical band gap of the SiNx films varied from 4.85 to 4.39 eV depending on the bias voltage.
We report the first photoreflectance measurement of strain-induced piezoelectric field in a (111)B InGaAs/GaAs structure. The InGaAs quantum well was pseudomorphically grown in the undoped regions of a GaAs undoped–heavily doped structure. Four structures, two each with the same layer structures but different orientation, (111)B and (100), were used in this study. The electric fields in the undoped GaAs region were measured by Franz-Keldysh oscillations in photoreflectance. All the samples have a surface barrier height of about 0.7 eV. However, the measured electric field is 30% stronger in the (111)B sample compared to the (100) sample. We attribute this difference to the strain-induced electric field in the (111)B sample. The piezoelectric field in (111)B strained In0.15Ga0.85As obtained in this measurement is 2.2±0.5×105 V/cm, which agrees very well with theory.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.