Perilla, also termed as purple mint, Chinese basil, or Perilla mint, is a flavoring herb widely used in East Asia. Both crude oil and essential oil are employed for consumption as well as industrial purposes. Fatty acids (FAs) biosynthesis and oil body assemblies in Perilla have been extensively investigated over the last three decades. Recent advances have been made in order to reveal the enzymes involved in the fatty acid biosynthesis in Perilla. Among those fatty acids, alpha-linolenic acid retained the attention of scientists mainly due to its medicinal and nutraceutical properties. Lipids synthesis in Perilla exhibited similarities with Arabidopsis thaliana lipids’ pathway. The homologous coding genes for polyunsaturated fatty acid desaturases, transcription factors, and major acyl-related enzymes have been found in Perilla via de novo transcriptome profiling, genome-wide association study, and in silico whole-genome screening. The identified genes covered de novo fatty acid synthesis, acyl-CoA dependent Kennedy pathway, acyl-CoA independent pathway, Triacylglycerols (TAGs) assembly, and acyl editing of phosphatidylcholine. In addition to the enzymes, transcription factors including WRINKLED, FUSCA3, LEAFY COTYLEDON1, and ABSCISIC ACID INSENSITIVE3 have been suggested. Meanwhile, the epigenome aspect impacting the transcriptional regulation of FAs is still unclear and might require more attention from the scientific community. This review mainly outlines the identification of the key gene master players involved in Perilla FAs biosynthesis and TAGs assembly that have been identified in recent years. With the recent advances in genomics resources regarding this orphan crop, we provided an updated overview of the recent contributions into the comprehension of the genetic background of fatty acid biosynthesis. The provided resources can be useful for further usage in oil-bioengineering and the design of alpha-linolenic acid-boosted Perilla genotypes in the future.
Roses are one of the most highly produced and purchased ornamental plants worldwide. Procurement and preservation of pollen is essential for the production of diverse rose varieties. In this study, we analyzed pollen management conditions, such as the pollen collection stage, drying time, and storage temperature, to determine optimal conditions for rose pollen management. Pollens were stored under different conditions and the pollen vitality and germination rate were investigated through an optical microscope. The vitality of pollen was an essential factor for rose breeding and depended on the storage conditions. Collecting pollen in the seventh flowering stage resulted in a relatively higher pollen yield. Drying the flower for 5 h after the anther opened improved pollen germination. The germination rate of freshly collected pollen was similar to that of pollen stored at temperatures between −20 °C and −72 °C for up to 30 days, indicating the efficacy of pollen storage at sub-zero temperatures. Since the rate of fruiting increases when pollination is performed three times, considering the time and cost of breeding, it is appropriate to pollinate three times to increase the number of seeds. This study provides an efficient pollen management method to collect and store pollen for breeding.
Cut roses are grown throughout the four distinct seasons of spring, summer, autumn, and winter in Korea. Especially in the very hot or cold seasons of summer or winter, the temperature and light environments inside a greenhouse cause abiotic stress on the growth of horticultural crops. In a greenhouse where shade cultivation is performed in summer, the temperature is high and the light intensity is low, whereas in winter when shade cultivation is not performed, both temperature and light intensity are low. This experiment investigated the year-round growth and yield changes of cut roses grafted onto three rootstocks. The root activity of rootstocks was generally higher than that of the scion. The stomata of the grafted cut roses showed morphological changes according to the seasons. Compared with the scion, the stomata of grafted cut roses became smaller and their number increased in summer, whereas only the stomata size increased in winter. The grafted cut roses had characteristics of high photosynthetic efficiency such as photosynthesis rate, stomatal conductance, transpiration rate from rootstocks under harsh environmental conditions including temperature and light intensity, and thus the photosynthetic efficiency was higher than that of the scion. There was no significant change in the yield of grafted cut roses, but flower quality parameters such as the stem height, stem thickness, and weight of grafted cut roses were improved according to the rootstocks compared with those of the scion. In particular, in cut roses grafted with R. multiflora cv. Natal Briar and Rosa indica ‘Major’ rootstocks, the weight increased as the stem lengthened and thickened in spring, autumn, and winter. Therefore, grafting is effective in improving the quality of cut roses grown under abiotic stress caused by harsh temperature and light intensity conditions during winter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.